
Lab 2
Adding Suction Feedback

(Updated Fall 2019)

Goal: Implement Suction Feedback

• We want to subscribe to the information about Suction Feedback
• This means we want to know about a digital or analog input

• There is a one other subscriber in our code, so let’s use that as a
guide to help us

• Important commands
• rostopic list

• rostopic info <topic_name>

• rostopic echo <topic_name>

• rosmsg list

• rosmsg info <message_name>

How does a Subscriber work?

• We can see that the function takes three arguments:
• A topic name
• A data type
• A callback function

• The callback function is called each time the topic is published
• We assign the function return to “sub-position,” but we don’t use this

variable elsewhere in the code
• http://wiki.ros.org/rospy/Overview/Publishers%20and%20Subscribers
• http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%

29

http://wiki.ros.org/rospy/Overview/Publishers%20and%20Subscribers
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29

The callback function

• This function takes msg as the argument.

• It then passes the value of this data into global variables (thetas[])

• The data is stored in a data structure passed in as msg

The callback function (continued)

• We are using the callback function to bring message data into our
program.

• The additional code in this callback function (e.g.
current_position) is part of the way the our code is
implemented and not a required part of how a callback function
works.

• You can put additional code you might need within the callback
function

How can we find this data?

• If we didn’t have this data how could we find it?
• Let’s explore using the commands from before

• rostopic list

• rostopic info <topic_name>

• rostopic echo <topic_name>

• rosmsg list

• rosmsg info <message_name>

• Note: show and info work the same

• This process is done while running ROS in one terminal and entering
commands in a second
• Run roslaunch ur3_driver ur3_driver.launch in the first terminal
• Be sure to source devel/setup.bash in the second terminal
• Run rosrun lab2pkg_py lab2_exec.py at least once or you might not see some data.

rostopic list

• This gives a list of all the topics

• We can see /ur3/position

rostopic info /ur3/position

• This gives more information about a
specific topic

• Note that we can see the data type
used for the callback function

• This is also the name of the message

rosmsg list

• This gives a list of all the messages

• We can see the
ur3_driver/position

message here

• If you don’t see this, you probably
have not run the lab 2 code.

rosmsg info

ur3_driver/position

• This shows us all the
members of the message
data structure

• We can see 2 members:
• Float64[] position

• Note: [] indicates that this is an
array

• bool isReady

• Not used in Python

rostopic echo /ur3/position

• echo, allows us to see
the values of the topic

• Note that we can see
the current values of
position (there are
six values in the array)
and isReady

• echo continues to
output until stopped

rostopic echo

/ur3/position/position[0]

• We can look at elements within the data structure as well
• Here we are only looking at the value of Theta1 (position[0]) in the

position array

• We could just as easily look at Theta5 or isReady

• rostopic echo /ur3/position/position[0] –n 1

• This allows us to echo only one instance of data instead of streaming it

Putting it all together

• We know we want the values of position

• By searching the topics, we found the values in the topic
/ur3/position and the message data type position

• We can now create our subscriber function

• We assign it to a convenient variable (sub_position)

• We select an appropriate callback function name
(position_callback)

The callback function

• We learned the data type and pass it in (msg)

• We create global variables to receive the information update
(thetas[0],…,thetas[5])

• We extract the needed data from the data structure with:
• thetas[0] = msg.position[0]

• thetas[1] = msg.position[1]

• And so on…

Questions to answer for suction feedback

• What is the topic?

• What is the data type?

• What is the name of the variable?

• Where is the data we want in the data structure?
• Note: There are two solutions to this question: An analog and a digital one.

Applying to suction feedback

• Create a subscriber function call

• Create a callback function

• Implement the feedback into your code

• Remember: Suction feedback will not be updated immediately upon
turning on the gripper

