
LAB 2

The Tower of Hanoi with
ROS

2.1 Important

Read the entire lab before starting and especially the “Grading” section so you
are aware of all due dates and requirements associated with the lab. Hope-
fully you are reading this well before your lab section meets as given the com-
pressed schedule, it is very important that you arrive at lab well prepared. This
semester, the more you do prior to your lab session, the more you will get out
of the short time you have with the TA.

2.2 Objectives

This lab is an introduction to controlling the UR3 robot using the Robot Op-
erating System (ROS) and the Python programming language. In this lab, you
will:

• Modify the given starter python file to move the robot to waypoints and
enable and disable the suction cup gripper such that the blocks are moved
in the correct pattern.

• If the robot suction senses that a block is not in the gripper when it should
be, the program should halt with an error.

• Program the robot to solve the Tower of Hanoi problem allowing the user
to select any of three starting positions and ending positions.

6

2.3. PRE-LAB

2.3 Pre-Lab

Read “A Gentle Introduction to ROS”, available online, Specifically:

• Chapter 2: 2.4 Packages, 2.5 The Master, 2.6 Nodes, 2.7.2 Messages and
message types.

• Chapter 3 Writing ROS programs.

2.4 References

• Consult Appendix A of this lab manual for details of ROS and Python
functions used to control the UR3.

• “A Gentle Introduction to ROS”, Chapter 2 and 3. http://coecsl.ece

.illinois.edu/ece470/agitr-letter.pdf

• http://wiki.ros.org/

• Since this is a robotics lab and not a course in computer science or discrete
math, feel free to Google for solutions to the Tower of Hanoi problem.1

You are not required to implement a recursive solution.

1http://www.cut-the-knot.org/recurrence/hanoi.shtml (an active site, as of this writ-
ing.)

7

http://coecsl.ece.illinois.edu/ece470/agitr-letter.pdf
http://coecsl.ece.illinois.edu/ece470/agitr-letter.pdf
http://wiki.ros.org/
http://www.cut-the-knot.org/recurrence/hanoi.shtml

2.5. TASK

2.5 Task

2.5.1 Standard Tower Of Hanoi

As you hopefully know by now, the normal way that the Tower of Hanoi puzzle
is set up is as a stack of discs or blocks as seen in Figure 2.1. This makes many
of the rules obvious such as that you cannot move a lower block while a higher
block still rests on it. This arrangement is hard to simulate in Gazebo (The
simulator we will be using). Stacked blocks do not behave in a stable manner
and thus it is difficult to create neat stacks without disturbing/toppling them.
As an alternative, we have modified the puzzle to work with the simulator.

2.5.2 Simulated Tower Of Hanoi

In our version of Tower of Hanoi, we have laid the blocks flat on the table as seen
in Figure 2.2. Now, instead of rising vertically from the table, the blocks “rise”
as they move farther from the viewer. Thus the “towers” form the columns of
a grid, while the “height” depends on the rows of the grid. We will make use of
this matrix like structure to organize our waypoints in the code.
Color has been used to help keep track of the blocks in the simulator:

1. Red - Top Block

2. Yellow - Middle Block

3. Green - Bottom Block

This ”2D” version doesn’t have gravity to enforce building from ”bottom” to
”top”, but you should still code it as if it has gravity (i.e. no floating blocks).
You may not place a block on top of a lower-numbered block, as illustrated in
Figure 2.3. (For example, no green block on top of red or yellow blocks.) An
example of a legal move can be seen in Figure 2.4.
In addition, unlike an actual vacuum gripper, the vacuum gripper in the sim-
ulator has to go to the center of an object in order to actually grip it. Due to
this difference, you will be given two files that record the locations of towers
corresponding to the actual lab environment and the simulator environment.
For this lab, we will complicate the task slightly. Instead of a set start and end
position, your python program should use the robot to move a tower from any
of the three locations to any of the other two locations. Therefore, you should
prompt the user to specify the start and destination locations for the tower.
Additionally, you will make use of suction feedback to verify that you have
grasped the desired block successfully. If a block is missing, the robot should
stop the puzzle, shut off the gripper and return to its home position.

8

2.5. TASK

Figure 2.1: Standard Tower of Hanoi configuration with blocks stacked on top
of each other.

Figure 2.2: Example start and finish tower locations in the simulated version
of the puzzle.

9

2.5. TASK

Figure 2.3: Example of an illegal move.

Figure 2.4: Example of a legal move.

10

2.6. PROCEDURE

2.6 Procedure

1. Create your own workspace as shown in Appendix A.

2. If you haven’t already, download lab2andDriver.tar.gz from the course
website and extract into your catkin workspace /src folder. Do this at a
command prompt with the tar command, tar -xvf lab2andDriver.tar.gz.
You should see two folders lab2pkg py and drivers. Compile your
workspace with catkin make. Inside this package you can find lab2 exec.py
with comments to help you complete the lab.

• lab2 exec.py a file in scripts folder with skeleton code to get you
started on this lab. See Appendix A for how to use basic ROS. Stu-
dents are encouraged to make their own ”cheat sheet” for some com-
monly used ROS and Linux commands. Also read carefully through
the below section that takes you line by line through the starter code.

• lab2 spawn.py a file in scripts folder that allows you to spawn and
respawn blocks in the desired starting location (A, B, or C).

• CMakeLists.txt a file that sets up the necessary libraries and en-
vironment for compiling lab2 exec.py.

• package.xml This file defines properties about the package including
package dependencies.

• Every time you open a new terminal, you need to run source de-
vel/setup.bash in your catkin folder.

• (a) To run lab2 code on real robot:

i. In one terminal source it and run roslaunch ur3 driver
ur3 driver.launch.

ii. Then run the lab2 ros node rosrun lab2pkg py lab2 exec.py
--simulator False

(b) To run lab2 code in simulator:

i. In one terminal source it and run roslaunch ur3 driver
ur3 gazebo.launch.

ii. Then run the lab2 spawn code to spawn blocks rosrun lab2pkg py
lab2 spawn.py

iii. Enter which tower location you want to spawn {1, 2, 3}
iv. Enter whether you want a block to be taken away {y/n}
v. Finally, run the lab2 ros node rosrun lab2pkg py lab2 exec.py

--simulator True

3. Modify lab2 exec.py to prompt the user for the start and destination
tower locations (you may assume that the user will not choose the same
location twice) and move the blocks accordingly using the suction cup to
grip the blocks. The starter file performs basic motions but provides a

11

2.7. LAB2 EXEC.PY EXPLAINED

function definition for moving blocks (move block). Once you under-
stand the starter code moving from one position to the next, clean up the
code by completing the shell function move block. move block picks
up a block from a tower and places it on another tower. You may also
create other functions for prompting user input and solving the Tower
of Hanoi problem given starting and ending locations but these are not
required.

4. Add one more feature to your program. As you saw in Lab 1.5, the Coval
device that is creating the vacuum for the gripper also senses the level of
suction being produced indicating if an item is in the gripper. Recall that
Digital Input 0 and Analog Input 0 are connected to this feedback.
Use Digital Input 0 or Analog Input 0 to determine if a block is held
by the gripper. If no block is found where a block should be, have your
program exit, turn off the gripper, return home and print an error to the
console.
To figure out how to do this with ROS you are going to have to do a
bit of “ROS” investigation. Use “rostopic list”, “rostopic info” and
“rosmsg list” to discover what topic to subscribe and what message will
be recieved in your subscribe callback function. Once you find the topic
and message run “rosmsg info” to figure out what variable you will need
to read from the message sent to your callback function. Just like the
global variables thetas that save the positions of the robot joints inside
the call back position callback(), create global variables to communicate
to your code the state of Digital Input 0 or Analog Input 0. Normally
once you figure out which message you will be using you need to import it
in the lab2 header file that defines this message. The lab2 header file
has already imported it in lab2 header.py for you. Use the explanation
below and the given code in lab2 exec.py that creates the subscription
to ur3/position and its callback function as a guide to subscribe to the
rostopic that publishes the IO status.

2.7 Lab2 exec.py Explained

First open up lab2 exec.py and read through the code and its comments as this
is the latest version of Lab 2’s starter code. Below is the same lab2 exec.py
file listing with code comments removed and possible small differences due to
changes in the lab. If you find a difference go with the actual lab2 exec.py file
as the correct version. lab2 exec.py is broken down into sections and described
in more detail below.

import os

import argparse

import copy

import time

import rospy

import rospkg

12

2.7. LAB2 EXEC.PY EXPLAINED

import numpy as np

import yaml

import sys

from lab2_header import *

20Hz

SPIN_RATE = 20

UR3 home location

home = np.radians([120, -90, 90, -90, -90, 0])

UR3 current position, using home position for initialization

current_position = copy.deepcopy(home)

thetas = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

digital_in_0 = 0

analog_in_0 = 0

suction_on = True

suction_off = False

current_io_0 = False

current_position_set = False

Q = None

You can find lab2 header.py in the lab2pkg py/scripts directory. It in-
cludes all needed files to allow lab2 exec.py to call ROS functionality. SPIN RATE
will be used as the publish rate to send commands to the ROS driver. This block
also initializes positions such as the home position and a global variable to store
the current position. There are also some other global variables for storing the
input/feedback states and also some constants. You should use these global
variables and constants in different functions to help you finish the task.

with open(yamlpath, ’r’) as f:

try:

Load the data as a dict

data = yaml.load(f)

if args.simulator.lower() == ’true’:

Q = data[’sim_pos’]

elif args.simulator.lower() == ’false’:

Q = data[’real_pos’]

else:

print("Invalid simulator argument, enter True or False")

sys.exit()

except:

print("YAML not found")

sys.exit()

Q is a list that stores all the necessary waypoints for the robot to pick and
place the blocks in order to solve the Tower of Hanoi. lab2 data.yaml stores
all the prerecorded waypoints, and the above script simply reads the waypoints
according to whether it’s operating on a simulator or not. Notice that the

13

2.7. LAB2 EXEC.PY EXPLAINED

waypoints are different for the simulator and real robot, and exchanging the
two would lead to undesirable results. In each entry of Q[tower index][block
height][above block/on block], there are six angles in radians that correspond
to the arm’s six joint angles. Q is defined as illustrated below:

Figure 2.5: Waypoints Matrix Q

def position_callback(msg):

global thetas

global current_position

global current_position_set

thetas[0] = msg.position[0]

thetas[1] = msg.position[1]

thetas[2] = msg.position[2]

thetas[3] = msg.position[3]

thetas[4] = msg.position[4]

thetas[5] = msg.position[5]

current_position[0] = thetas[0]

current_position[1] = thetas[1]

current_position[2] = thetas[2]

current_position[3] = thetas[3]

current_position[4] = thetas[4]

current_position[5] = thetas[5]

current_position_set = True

14

2.7. LAB2 EXEC.PY EXPLAINED

This is lab2node’s callback function that is called when the ur3 driver pub-
lishes new position data. ur3 driver publishes new angle position data every
8ms, so this function position callback is run every 8ms.
Next in lab2 exec.py are the function gripper() and move arm(). These
functions are passed variables that are initialized at the beginning of the file.
The program runs from the main function, so it will be explained first and then
we will come back to gripper() and move arm().

def main():

global home

global Q

...

Initialize ROS node

rospy.init_node(’lab2node’)

Initialize publisher for ur3/command with buffer size of 10

pub_command = rospy.Publisher(’ur3/command’, command, queue_size=10)

Initialize subscriber to ur3/position and callback fuction

each time data is published

sub_position = rospy.Subscriber(’ur3/position’, position, position_callback)

To start as a ROS node the rospy.init node() function needs to be called.
Then the node needs to setup which other nodes it receives data from and which
nodes it sends data to. This code first specifies that it will be publishing a mes-
sage to the “ur3” node “command” subscriber. The message it will be send-
ing is the command message which consists of the desired robot joint angles,
the velocity of each joint and the acceleration of each joints. Next lab2node
subscribes to “ur3” node “position” publisher. Whenever new joint angles are
ready to be sent, the callback function “position callback” is called and passed
the message position which contains the six joint angles. As an exercise in lab,
see if you can list the “ur3” node and “command” subscriber and “position”
publisher using the “rostopic list” command in your catkin work direc-
tory. Also use “rostopic info” to double check that “command” is “ur3”
subscriber and “position” is a publisher. Also run “rosmsg list” to find the
messages “ur3 driver.msg.position”, “ur3 driver.msg.command”.

input_done = 0

loop_count = 0

while(not input_done):

input_string = raw_input("Enter number of loops <Either 1 2 or 3> ")

print("You entered " + input_string + "\n")

if(int(input_string) == 1):

input_done = 1

loop_count = 1

elif (int(input_string) == 2):

15

2.7. LAB2 EXEC.PY EXPLAINED

input_done = 1

loop_count = 2

elif (int(input_string) == 3):

input_done = 1

loop_count = 3

else:

print("Please just enter the character 1 2 or 3 \n\n")

This standard python code printing messages to the command prompt and
receiving text input from the command prompt. It loops until the correct data
is input.

Check if ROS is ready for operation

while(rospy.is_shutdown()):

print("ROS is shutdown!")

rospy.loginfo("Sending Goals ...")

loop_rate = rospy.Rate(SPIN_RATE)

Here the code waits for roscore to be executed and ready. rospy.loginfo prints
a message to the command prompt. rospy.Rate(SPIN RATE) sets up a class
loop rate that can be used to sleep the calling process. The amount of time
that the process will sleep is determined by the SPIN RATE parameter. In
our case this is set to 20Hz or 50ms. loop rate does not wake up 50 ms after it
has been called, instead it wakes up the process every 50ms. loop rate keeps
track of the last time it was called to determine how long to sleep the process
to keep a consistent rate.

while(loop_count > 0):

move_arm(pub_command, loop_rate, home, 4.0, 4.0)

rospy.loginfo("Sending goal 1 ...")

move_arm(pub_command, loop_rate, Q[0][0][1], 4.0, 4.0)

gripper(pub_command, loop_rate, suction_on)

Delay to make sure suction cup has grasped the block

time.sleep(1.0)

rospy.loginfo("Sending goal 2 ...")

move_arm(pub_command, loop_rate, Q[1][1][1], 4.0, 4.0)

rospy.loginfo("Sending goal 3 ...")

move_arm(pub_command, loop_rate, Q[2][0][1], 4.0, 4.0)

This moves the arm to a number of positions to give you a start at how to
program the robot to move to different positions. See the move arm and gripper
function definitions below.

loop_count = loop_count - 1

16

2.7. LAB2 EXEC.PY EXPLAINED

Repeat the moves loop count number of times.

def move_arm(pub_cmd, loop_rate, dest, vel, accel):

global thetas

global SPIN_RATE

error = 0

spin_count = 0

at_goal = 0

driver_msg = command()

driver_msg.destination = dest

driver_msg.v = vel

driver_msg.a = accel

driver_msg.io_0 = current_io_0

pub_cmd.publish(driver_msg)

loop_rate.sleep() # 50ms

while(at_goal == 0):

if(abs(thetas[0]-driver_msg.destination[0]) < 0.0005 and \

abs(thetas[1]-driver_msg.destination[1]) < 0.0005 and \

abs(thetas[2]-driver_msg.destination[2]) < 0.0005 and \

abs(thetas[3]-driver_msg.destination[3]) < 0.0005 and \

abs(thetas[4]-driver_msg.destination[4]) < 0.0005 and \

abs(thetas[5]-driver_msg.destination[5]) < 0.0005):

at_goal = 1

#rospy.loginfo("Goal is reached!")

loop_rate.sleep()

if(spin_count > SPIN_RATE*5):

pub_cmd.publish(driver_msg)

rospy.loginfo("Just published again driver_msg")

spin_count = 0

spin_count = spin_count + 1

return error

The move arm() function takes as parameters pub cmd, which is the pub-
lisher to ur3 driver commanding a new position for the robot to move to.
loop-rate is the sleep rate this function will sleep in between checking if the
robot has reached the commanded position. This is necessary so that other
ROS processes are given processor time during move arm’s wait for the robot
to get to the commanded position. dest is the six joint angle destinations,
in radians, that the robot will be commanded to move to. vel is the veloc-
ity that each joint will move going to the destination. accel is the acceler-
ation that each joint will move goint to the destination. The code creates a
variable driver msg which is the command message to be sent ur3 driver.
driver msg is assigned the destination, dest, acceleration, accel, and velocity,

17

2.7. LAB2 EXEC.PY EXPLAINED

vel. In addition the state of the suction cup gripper, current io 0, is assigned
to driver msg. This is the last state of the gripper, On or Off, commanded by
the function gripper(). Next the driver msg is published to ur3 driver with
the pub cmd.publish(driver msg) instruction. The while(at goal == 0)
loop, loops until the robot arm has reached the commanded position or at least
with in 0.0005 radians. If for some reason the first publish does not send cor-
rectly, after five seconds the command is published again. This will repeat until
the robot arm reaches the commanded position.

def gripper(pub_cmd, loop_rate, io_0):

global SPIN_RATE

global thetas

global current_io_0

global current_position

error = 0

spin_count = 0

at_goal = 0

current_io_0 = io_0

driver_msg = command()

driver_msg.destination = current_position

driver_msg.v = 1.0

driver_msg.a = 1.0

driver_msg.io_0 = io_0

pub_cmd.publish(driver_msg)

while(at_goal == 0):

if(abs(thetas[0]-driver_msg.destination[0]) < 0.0005 and \

abs(thetas[1]-driver_msg.destination[1]) < 0.0005 and \

abs(thetas[2]-driver_msg.destination[2]) < 0.0005 and \

abs(thetas[3]-driver_msg.destination[3]) < 0.0005 and \

abs(thetas[4]-driver_msg.destination[4]) < 0.0005 and \

abs(thetas[5]-driver_msg.destination[5]) < 0.0005):

at_goal = 1

loop_rate.sleep()

if(spin_count > SPIN_RATE*5):

pub_cmd.publish(driver_msg)

rospy.loginfo("Just published again driver_msg")

spin_count = 0

spin_count = spin_count + 1

return error

The gripper() function is very similar to the move arm() function above. The
same pub cmd and loop-rate are passed to gripper() but only the On/Off
desired state of the suction cup gripper is the remaining parameter. Looking
at the move arm() function gripper() looks very similar but the robot joint

18

2.8. REPORT

destination is the current state of the arm so the robot is already at that position
so it does not move. All that the command changes is whether the suction
gripper is On or Off by setting driver msg.io 0 equal to the passed parameter
bool io 0. See the move arm() description for more details on this code.

def move_block(pub_cmd, loop_rate, start_loc, \

start_height, end_loc, end_height, \

vel, accel):

error = 0

return error

The move block() function definition is provided and should be used to com-
plete the assignment. Functions are useful when the same procedure is used
many times. To move a block, multiple arm movements are necessary along with
gripper actuation. Instead of cluttering the main with many calls to move arm
and gripper(), you will compartmentalize the calls in the move block func-
tion. Use this function to compartmentalize moving a block from one tower to
another. The start and end locations are integers given to tower positions and
the heights are integers for blocks in the stack.

2.8 Report

Each student will submit a lab report using the guidelines given in the “ECE
470: How to Write a Lab Report” document. Please be aware of the following:

• Lab reports will be submitted online at GradeScope.

• The report will be due three weeks after your lab session for Lab 2. Exact
times and dates can be seen on GradeScope.

Your report should include the following:

• Briefly explain the objective of the lab i.e. the goal and rules of Tower of
Hanoi. Images would greatly aid in this explanation.

• What was the focus of this lab? (Hint: ROS and implementing feedback)

• With that in mind you should cover the following (in detail):

– What is ROS and how does it work? (What kind of figure would
help explain this?)

– How did you use the ROS commands (i.e. rostopic list, rostopic
info, etc.) to complete your task?

– How did you implement feedback?

• Make use of code snippets as needed to aid in your explanation

• Read “ECE 470: How to Write a Lab Report” carefully so you
know all the requirements.

• Unless your TA gives other guidance, include your lab2 exec.py code as
an Appendix to your report as described in lab report guidelines.

19

www.gradescope.com
www.gradescope.com

2.9. DEMO

2.9 Demo

Demonstrations of your working code will either be done in-person or over Zoom.
They will be done live (i.e. no recordings) with your lab section TA. Demos are
due 2 weeks after your lab session.
The default method of demonstrating your work will be via the simulation.
While we want to encourage in-person students to run their code on the real
robot, due to time limitations, this may be difficult to do with your TA by the
due date. You can always run it for your own satisfaction at another time.

2.9.1 Demo Process

Your TA will require you to run your program (at least) twice; on each run, the
TA will specify a different set of start and destination locations for the tower.
They will also test that suction feedback has been implemented correctly.

2.10 Grading

• 80 points, successful demonstration.

• 20 points, report.

2.11 Tentative Due Dates - Fall 2020

The exact date and time will depend on your lab section and can be found on
GradeScope.

2.11.1 Group A

• Demonstration - Week of October 5

• Report - Week of October 12

2.11.2 Group B

• Demonstration - Week of October 12

• Report - Week of October 19

20

www.gradescope.com

Appendix A

ROS Programming with
Python

A.1 Overview

ROS is an open-source, meta-operating system for your robot. It provides the
services you would expect from an operating system, including hardware ab-
straction, low-level device control, implementation of commonly-used function-
ality, message-passing between processes, and package management. It also
provides tools and libraries for obtaining, building, writing, and running code
across multiple computers.

• The ROS runtime “graph” is a peer-to-peer network of processes (poten-
tially distributed across machines) that are loosely coupled using the ROS
communication infrastructure. ROS implements several different styles
of communication, including synchronous RPC-style communication over
services, asynchronous streaming of data over topics, and storage of data
on a Parameter Server.

• For more details about ROS: http://wiki.ros.org/

• How to install on your own Ubuntu: http://wiki.ros.org/ROS/Insta

llation

• For detailed tutorials: http://wiki.ros.org/ROS/Tutorials

A.2 ROS Concepts

The basic concepts of ROS are nodes, Master, messages, topics, Parameter
Server, services, and bags. However, in this course, we will only be encountering

21

http://wiki.ros.org/
http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/ROS/Tutorials

A.3. BEFORE WE START..

the first four.

• Nodes “programs” or ”processes” in ROS that perform computation. For
example, one node controls a laser range-finder, one node controls he wheel
motors, one node performs localization ...

• Master Enable nodes to locate one another, provides parameter server,
tracks publishers and subscribers to topics, services. In order to start
ROS, open a terminal and type:

$ r o s c o r e

roscore can also be started automatically when using roslaunch in termi-
nal, for example:

$ ros launch <package name> <launch f i l e name>. launch
the launch f i l e f o r a l l our l a b s :
$ ros launch u r 3 d r i v e r u r 3 d r i v e r . launch

• Messages Nodes communicate with each other via messages. A message
is simply a data structure, comprising typed fields.

• Topics Each node publish/subscribe message topics via send/receive mes-
sages. A node sends out a message by publishing it to a given topic. There
may be multiple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple topics.In gen-
eral, publishers and subscribers are not aware of each others’ existence.

Figure A.1: source: http://wiki.ros.org/ROS/Concepts

A.3 Before we start..

Here are some useful Linux/ROS commands

• The command “ls” stands for (List Directory Contents), List the contents
of the folder, be it file or folder, from which it runs.

$ l s

22

http://wiki.ros.org/ROS/Concepts

A.3. BEFORE WE START..

• The “mkdir” (Make directory) command create a new directory with name
path. However is the directory already exists, it will return an error mes-
sage “cannot create folder, folder already exists”.

$ mkdir <new directory name>

• The command “pwd” (print working directory), prints the current working
directory with full path name from terminal

$ pwd

• The frequently used “cd” command stands for change directory.

$ cd /home/ user /Desktop

return to previous directory

$ cd . .

Change to home directory

$ cd ˜

• The hot key “ctrl+c” in command line terminates current running exe-
cutable. If “ctrl+c” does not work, closing your terminal as that will also
end the running Python program. DO NOT USE “ctrl+z” as it can
leave some unknown applications running in the background.

• If you want to know the location of any specific ROS package/executable
from in your system, you can use “rospack” find “package name” com-
mand. For example, if you would like to find ‘lab2pkg py’ package, you
can type in your console

$ rospack f i n d lab2pkg py

• To move directly to the directory of a ROS package, use roscd. For exam-
ple, go to lab2pkg py package directory

$ roscd lab2pkg py

• Display Message data structure definitions with rosmsg

$ rosmsg show <message type> #Disp lay the f i e l d s in the msg

• rostopic, A tool for displaying debug information about ROS topics, in-
cluding publishers, subscribers, publishing rate, and messages.

$ r o s t o p i c echo / topic name #Print messages to screen
$ r o s t o p i c l i s t #Li s t a l l the t o p i c s a v a i l a b l e
$ r o s t o p i c pub <top ic−name> <top ic−type> [data . . .]
#Pub l i sh data to t o p i c

23

A.4. CREATE YOUR OWN WORKSPACE

A.4 Create your own workspace

Since other groups will be working on your same computer, you should backup
your code to a USB drive or cloud drive everytime you come to lab. This way
if your code is tampered with (probably by accident) you will have a backup.

• First create a folder in the home directory, mkdir catkin (yourNETID). It
is not required to have ”catkin” in the folder name but it is recommended.

$ mkdir −p c a t k i n (yourNETID)/ s r c
$ cd c a t k i n (yourNETID)/ s r c
$ c a t k i n i n i t w o r k s p a c e

• Even though the workspace is empty (there are no packages in the ’src’
folder, just a single CMakeLists.txt link) you can still ”build” the workspace.
Just for practice, build the workspace.

$ cd ˜/ c a t k i n (yourNETID)/
$ catkin make

• VERY IMPORTANT: Remember to ALWAYS source when you open
a new command prompt, so you can utilize the full convenience of Tab
completion in ROS. Under workspace root directory:

$ cd c a t k i n (yourNETID)
$ source deve l / setup . bash

A.5 Running a Node

• Once you have your catkin folder initialized, add the UR3 driver and lab
starter files. The compressed file lab2andDanDriver.tar.gz, found at the
class website contains the driver code you will need for all the ECE 470 labs
along with the starter code for LAB 2. Future lab compressed files will only
contain the new starter code for that lab. Copy lab2andDriverPy.tar.gz
to your catkin directories “src” directory. Change directory to your “src”
folder and uncompress by typing “tar -zxvf lab2andDriver.tar.gz”.

“cd ..” back to your catkin (yourNETID) folder and build the code with
“catkin make”

• After compilation is complete, we can start running our own nodes. For
example our lab2node node. However, before running any nodes, we must
have roscore running. This is taken care of by running a launch file.

$ ros launch u r 3 d r i v e r u r 3 d r i v e r . launch

This command runs both roscore and the UR3 driver that acts as a sub-
scriber waiting for a command message that controls the UR3’s motors.

24

A.6. MORE PUBLISHER AND SUBSCRIBER TUTORIAL

• Open a new command prompt with “ctrl+shift+N”, cd to your root
workspace directory, and source it “source devel/setup.bash”.

• We also need to make lab2 exec.py executable.

$ chmod +x lab2 exec . py

• Run your node with the command rosrun in the new command prompt.
Example of running lab2dannode node in lab2danpkg package:

$ rosrun lab2pkg py lab2 exec . py

A.6 More Publisher and Subscriber Tutorial

Please refer to the webpage: http://wiki.ros.org/ROS/Tutorials/Writing

PublisherSubscriber(c%2B%2B)

25

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c%2B%2B)
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(c%2B%2B)

	The Tower of Hanoi with ROS
	Important
	Objectives
	Pre-Lab
	References
	Task
	Standard Tower Of Hanoi
	Simulated Tower Of Hanoi

	Procedure
	Lab2_exec.py Explained
	Report
	Demo
	Demo Process

	Grading
	Tentative Due Dates - Fall 2020
	Group A
	Group B

	ROS Programming with Python
	Overview
	ROS Concepts
	Before we start..
	Create your own workspace
	Running a Node
	More Publisher and Subscriber Tutorial

