ADC10 Cheat Sheet

ADC10CTL0 ADC10 Control Register 0

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SREFx</td>
<td>ADC10SHTx</td>
<td>ADC10SR</td>
<td>REFOUT</td>
<td>REFBURST</td>
<td>MSC</td>
<td>REF2_5V</td>
<td>REFFON</td>
<td>ADC10ON</td>
<td>ADC10IE</td>
<td>ADC10IFG</td>
<td>ENC</td>
<td>ADC10SC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SREFx

Bits 15-13 Select reference.
- 000 VSS = VSS and VDD = VSSD
- 001 VSS = VSSD and VDD = VSS
- 010 VSS = VSSD and VDD = VSS
- 011 VSS = Buffered VSSD and VDD = VSS
- 100 VSS = VSS and VDD = VSSD
- 101 VSS = VSSD = VDD = VSSD Devices with VSSD, only
- 110 VSS = VSSD and VDD = VSSD, Devices with VSSD, pin only
- 111 VSS = Buffered VSSD and VDD = VSSD, Devices with VSSD, pins only

ADC10SHTx

Bits 12-11 ADC10 sample-and-hold time
- 00 4 x ADC10CLKs
- 01 8 x ADC10CLKs
- 10 16 x ADC10CLKs
- 11 64 x ADC10CLKs

ADC10SR

Bit 10 ADC10 sampling rate. This bit selects the reference buffer drive capability for the maximum sampling rate. Setting ADC10SR reduces the current consumption of the reference buffer.
- 0 Reference buffer supports up to ~200 ksp/s
- 1 Reference buffer supports up to ~50 ksp/s

REFOUT

Bit 9 Reference output
- 0 Reference output off
- 1 Reference output on. Devices with VSSD pin only

REFBURST

Bit 8 Reference burst.
- 0 Reference buffer on continuously
- 1 Reference buffer on only during sample-and-conversion

MSC

Bit 7 Multiple sample and conversion. Valid only for sequence or repeated modes.
- 1 The sampling requires a rising edge of the SHI signal to trigger each sample-and-conversion.
- 1 The first rising edge of the SHI signal triggers the sampling timer, but further sample-and-conversions are performed automatically as soon as the prior conversion is completed

REF2_5V

Bit 6 Reference-generator voltage. REFFON must also be set.
- 0 1.5 V
- 1 2.5 V

REFFON

Bit 5 Reference generator on
- 0 Reference off
- 1 Reference on

ADC10ON

Bit 4 ADC10 on
- 0 ADC10 off
- 1 ADC10 on

ADC10IE

Bit 3 ADC10 interrupt enable
- 0 Interrupt disabled
- 1 Interrupt enabled

ADC10IFG

Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically reset when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when a block of transfers is completed.
- 0 No interrupt pending
- 1 Interrupt pending

ENC

Bit 1 Enable conversion
- 0 ADC10 disabled
- 1 ADC10 enabled

ADC10SC

Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set together with one instruction. ADC10SC is reset automatically.
- 0 No sample-and-conversion start
- 1 Start sample-and-conversion
ADC10CTL1 ADC10 Control Register 1

<table>
<thead>
<tr>
<th>INCHx</th>
<th>SHSx</th>
<th>ADC10DF</th>
<th>ISSH</th>
<th>ADC10DIVx</th>
<th>ADC10SELx</th>
<th>Convex</th>
<th>ADC10BUSY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INCHx
Bits 15-12: Input channel select. These bits select the channel for a single-conversion or the highest channel for a sequence of conversions. Only available ADC channels should be selected. See device specific datasheet.
- 0000: A0
- 0001: A1
- 0010: A2
- 0011: A3
- 0100: A4
- 0101: A5
- 0110: A6
- 0111: A7
- 1000: Vdd
- 1001: Vdd/Vref.
- 1010: Temperature sensor
- 1011: (Vdd - Vss) / 2
- 1100: (Vdd - Vss) / 2, A12 on MSP430F22xx devices
- 1101: (Vdd - Vss) / 2, A13 on MSP430F22xx devices
- 1110: (Vdd - Vss) / 2, A14 on MSP430F22xx devices
- 1111: (Vdd - Vss) / 2, A15 on MSP430F22xx devices

SHSx
Bits 11-10: Sample-and-hold source select.
- 00: ADC10DC bit
- 01: Timer_A.OUT1 (1)
- 10: Timer_A.OUT2 (2)
- 11: Timer_A.OUT2 (Timer_A.OUT1 on MSP430F20x0, MSP430G2x31, and MSP430G2x30 devices) (1)

ADC10DF
Bit 9: ADC10 data format
- 0: Straight binary
- 1: 2's complement

ISSH
Bit 8: Invert signal sample-and-hold
- 0: The sample-input signal is not inverted.
- 1: The sample-input signal is inverted.

ADC10DIVx
Bits 7-5: ADC10 clock divider
- 000: /1
- 001: /2
- 010: /3
- 011: /4
- 100: /5
- 101: /6
- 110: /7
- 111: /8

ADC10SELx
Bits 4-3: ADC10 clock source select
- 00: ADC10DC
- 01: ACLK
- 10: MCLK
- 11: SMCLK

CONSEQx
Bits 2-1: Conversion sequence mode select
- 00: Single-channel-single-conversion
- 01: Sequence-of-channels
- 10: Repeat-single-channel
- 11: Repeat-sequence-of-channels

ADC10BUSY
Bit 0: ADC10 busy. This bit indicates an active sample or conversion operation
- 0: No operation is active.
- 1: A sequence, sample, or conversion is active.

Can be modified only when ENC = 0
ADC10AE0 Analog (Input) Enable Control Register 0

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC10AE0x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADC10AE0x Bits 7-0 ADC10 analog enable. These bits enable the corresponding pin for analog input. BIT0 corresponds to A0, BIT1 corresponds to A1, etc. The analog enable bit of not implemented channels should not be programmed to 1.

| 0 | Analog input disabled |
| 1 | Analog input enabled |

ADC10AE1 Analog (Input) Enable Control Register 1

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC10AE1x</td>
<td>Reserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADC10AE1x Bits 7-4 ADC10 analog enable. These bits enable the corresponding pin for analog input. BIT4 corresponds to A12, BIT5 corresponds to A13, BIT6 corresponds to A14, and BIT7 corresponds to A15. The analog enable bit of not implemented channels should not be programmed to 1.

| 0 | Analog input disabled |
| 1 | Analog input enabled |

Reserved Bits 3-0 Reserved

ADC10MEM Conversion-Memory Register, Binary Format (Read Only Register)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Conversion Result</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is the data format of ADC10MEM when Bit ADC10DF is 0

Conversion Result, Bits 15-0, The 10-bit conversion results are right justified, straight-binary format. Bit 9 is the MSB. Bits 15-10 are always 0.

ADC10MEM Conversion-Memory Register, 2s Complement Format (Read Only Register)

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Conversion Result</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is the data format of ADC10MEM when Bit ADC10DF is 1

Conversion Result Bits 15-0, The 10-bit conversion result is left-justified, 2s complement format. Bit 15 is the MSB. Bits 5-0 are always 0
ADC10DTC0 ADC10 Data Transfer Control Register 0

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Reserved**: Bits 7-4. Reserved. Always read as 0.
- **ADC10TB** Bit 3: ADC10 two-block mode
 - 0: One-block transfer mode
 - 1: Two-block transfer mode
- **ADC10CT** Bit 2: ADC10 continuous transfer
 - 0: Data transfer stops when one block (one-block mode) or two blocks (two-block mode) have completed.
 - 1: Data is transferred continuously. DTC operation is stopped only if ADC10CT cleared, or ADC10SA is written to.
- **ADC10B1** Bit 1: ADC10 block one. This bit indicates for two-block mode which block is filled with ADC10 conversion results. ADC10B1 is valid only after ADC10IFG has been set the first time during DTC operation. ADC10TB must also be set.
 - 0: Block 2 is filled
 - 1: Block 1 is filled
- **ADC10FETCH** Bit 0: This bit should normally be reset.

ADC10DTC1 ADC10 Data Transfer Control Register 1

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DTC Transfers

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **DTC Transfers**: Bits 7-0. DTC transfers. These bits define the number of transfers in each block.
 - 0: DTC is disabled
 - 01h-0FFh: Number of transfers per block

ADC10SA Start Address Register for Data Transfer

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- **ADC10SAx**: Bits 15-1. ADC10 start address. These bits are the start address for the DTC. A write to register ADC10SA is required to initiate DTC transfers.
- **Unused**: Bit 0. Unused, Read only. Always read as 0.