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Laboratory handout 2 – Block diagrams and simulation

Given the derivative ẋ(t) := dx(t)/dt of the signal x(t), we recover

x(t) by integration:

x(t) = x(0) +
∫ t

0
ẋ(τ)dτ. (1)

This relationship is represented in the following block diagram.

x(0) +
∫ t

0

ẋ(t) x(t)

•

Given the differential equation

ẋ(t) +
1
T

x(t) = f (t), (2)

it follows that

ẋ(t) = f (t)− 1
T

x(t). (3)

The following partial block diagram shows the dependence of the

derivative ẋ(t) on x(t) and the input f (t).

1
T

f (t)+ ẋ(t)

−

x(t)

A complete block diagram is obtained by combining the partial

block diagram with the representation of the relationship between

ẋ(t) and x(t):

x(0) +
∫ t

0 •

1
T

f (t)+ ẋ(t) x(t)

−

•
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Given the differential equation

mẍ(t) + cẋ(t) + kx(t) = f (t), (4)

it follows that

ẍ(t) =
1
m
(

f (t)− cẋ(t)− kx(t)
)
, (5)

where ẍ(t) = d2x(t)/dt2. The following partial block diagram shows

the dependence of the derivative ẍ(t) on x(t), ẋ(t), and the input

f (t).

1
m

c
m

k
m

f (t) + ẍ(t)

−

−

ẋ(t)

x(t)

Since

ẋ(t) = ẋ(0) +
∫ t

0
ẍ(τ)dτ (6)

or, equivalently,

ẋ(0) +
∫ t

0

ẍ(t) ẋ(t)

the following block diagram provides a complete representation of

the original differential equation.

1
m ẋ(0) +

∫ t
0

c
m

k
m

f (t) + ẍ(t)

−

−
•

ẋ(t)
x(0) +

∫ t
0 •

x(t)

•

In matlab, the simulink environment provides support for
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graphical construction of block diagrams and simulation of the re-

sulting dynamical system. To start simulink, enter simulink on the

command line:

>> simulink

When the Simulink Library Browser window is open, enter <ctrl>+n

on your keyboard to open a new model window.

To build the single-component block diagram

2 +
∫ t

0
sin t x(t)

open the Continuous Library. Select the Integrator block and drag it

to your model. Next, open the Library Browser. Select the Sine Wave

block and drag it to your model. Finally, open the Sinks Library.

Select the Scope block and drag it to your model. Drag each of the

components in the model window to arrange them on the model

canvas.

Connect the components sequentially by clicking on the appro-

priate output port and dragging the marker to the appropriate input

port. The complete model should look like this:

Finally, to set the properties of each component, double-click on

each icon and assign the appropriate parameters, for example the ini-

tial value 2 for the integrator. Note that double-clicking on the Scope

opens up a separate window that can be used to view the output of

the Integrator.

To simulate the output x(t) to the input sin t, click the run button

to start the simulation. The Scope shows a graph of the function

2 +
∫ t

0
sin τ dτ = 3− cos t. (7)

Click on the Autoscale icon to fit the graph to the Scope window.
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Let u(t) = 1 for t ≥ 0 and 0 otherwise. To build a simulink

model representing the following block diagram

−1 +
∫ t

0 •

1
2

2u(t) + x(t)

−

focus on the Simulink Library Browser window, and enter <ctrl>+n

on your keyboard to open a new model window and save this to

disk. Add an Integrator from the Continuous Library, a Gain and

a Sum from the Math Operations Library, a Step from the Library

Browser, and a Scope from the Sinks Library, and arrange these on

the model canvas. You can flip the Gain component horizontally

by selecting its icon on the canvas and entering <ctrl>+i on your

keyboard.

To set the properties of the components, double-click on each

component and enter the appropriate settings. For the Sum, enter

|+- in the “List of signs” field. (The | symbol is accessed by pressing

<shift>+\.)

Finally, connect the components sequentially by clicking on the

appropriate output port and dragging the marker to the appropriate

input port. You can split off a separate connection to the Scope from

the connection between the Integrator and the Gain by right-clicking

at some point on the corresponding wire and dragging the marker to

the input port on the Scope.

To save the output of a simulation to the matlab workspace, add

a To Workspace component from the Sinks Library to your model and

connect it appropriately. Double-click on its icon to set the variable

name for the output, e.g., “xout”. Set the “Save Format” to “Array”.

Once the simulation is complete, you can use the matlab plot com-

mand to graph the time history, e.g.,

>> plot(tout, xout)

The complete model should look like this:
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•

Provided that the signal f (t) is bounded by some exponential

function for all t ≥ 0 in the time domain, then its Laplace transform

L
[

f (#)
]
(s) :=

∫ ∞

0
f (t)e−st dt (8)

is defined for all complex numbers s in some right half plane in the

frequency domain.

When both sides are defined,

L
[
α f (#)

]
(s) := αL

[
f (#)

]
(s), (9)

L
[

f (#) + g(#)
]
(s) := L

[
f (#)

]
(s) + L

[
g(#)

]
(s), (10)

and

L
[ ∫ #

0
f (τ)dτ

]
(s) :=

1
s
L
[

f (#)
]
(s). (11)

When the relationship between the Laplace transforms X(s) and

Y(s) is of the form of a product

Y(s) = H(s) · X(s) (12)

for some transfer function H(s), given by the Laplace transform of

the corresponding unit impulse response h(t), then y(t) is given by

the convolution
(
h(#) ∗ x(#)

)
(t).

•

Provided that x(0) = 0, the time-domain block diagram
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∫ t
0 •

1
T

f (t)+ x(t)

−

is equivalent to the frequency-domain block diagram

1
s •

1
T

F(s)+ X(s)

−

where F(s) := L
[

f (#)
]
(s) and X(s) := L

[
x(#)

]
(s). This implies that

X(s) =
1
s

(
F(s)− 1

T
X(s)

)
⇒ X(s) =

T
sT + 1

F(s) (13)

in terms of the transfer function H(s) = T/(sT + 1), or, equivalently,

T
sT+1

F(s) X(s)

Similarly, provided that x(0) = 0 and ẋ(0) = 0, the time-domain

block diagram

1
m

∫ t
0

c
m

k
m

f (t) +

−

−
•

∫ t
0 •

x(t)

is equivalent to the frequency-domain block diagram

1
m

1
s

c
m

k
m

F(s) +

−

−
• 1

s •
X(s)
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where F(s) := L
[

f (#)
]
(s) and X(s) := L

[
x(#)

]
(s). This implies that

X(s) =
1

ms2

(
F(s)− csX(s)− kX(s)

)
⇒ X(s) =

1
ms2 + cs + k

F(s) (14)

in terms of the transfer function H(s) = 1/(ms2 + cs + k), or, equiva-

lently,

1
ms2+cs+k

F(s) X(s)

•

When x(0) ̸= 0, the time-domain block diagram

x(0) +
∫ t

0 •

1
T

f (t)+ x(t)

−

is equivalent to the frequency-domain block diagram

1
s •

1
T

F(s)+ +

x(0)

+ X(s)

−

where F(s) := L
[

f (#)
]
(s) and X(s) := L

[
x(#)

]
(s). This implies that

X(s) =
1
s

(
x(0) + F(s)− 1

T
X(s)

)
⇒ X(s) =

T
(
x(0) + F(s)

)
sT + 1

(15)

The free response when f (t) = 0 for all t is then equal to the unit

impulse response corresponding to the transfer function

Tx(0)
sT + 1

. (16)

•

In matlab, a transfer function that is the ratio of two polynomials

in s may be constructed using the tf command. The command
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>> sys=tf(2,[2 1])

assigns a representation of the transfer function

H(s) =
2

2s + 1
(17)

to the variable sys. A plot of the corresponding unit impulse re-

sponse is obtained using the impulse command:

>> impulse(sys)

Similarly, If L
[
x(#)

]
(s) = H(s) · L

[
f (#)

]
(s) and f (t) = 1 for all t ≥ 0,

then a plot of the corresponding unit step response x(t) is obtained

using the step command:

>> step(sys)

When the relationship between the Laplace transforms of the input

and output to a dynamical system can be expressed in terms of a

transfer function H(s) that is the ratio of two polynomials in s, then

the corresponding block diagram can be constructed in simulink by

adding a Transfer Fcn component from the Continuous Library to a

model.

The simulink model corresponding to the block diagram

3
3s+1

F(s) X(s)

may then given by

where the numerator and denominator coefficients entered in the

corresponding fields of the Transfer Fcn component are 3 and [3 1],

respectively. Note that the input and output signals to the Transfer

Fcn component are functions in the time domain. The frequency-

domain transfer function represents a time-domain convolution.
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Exercises

1. Draw a time-domain block diagram with input f (t) and output

y(t) representing the differential equation

ẏ(t) = f (t).

2. Draw a time-domain block diagram with input f (t) and output

x(t) representing the differential equation

ẍ(t)− x(t) = f (t).

3. Draw a frequency-domain block diagram with input F(s) :=

L
[

f (#)
]
(s) and output Y(s) := L

[
y(#)

]
(s) representing the differ-

ential equation

ÿ(t) = f (t).

Find an expression for Y(s) in terms of F(s), y(0), and ẏ(0).

•

Solutions

1. Here,

y(0) +
∫ t

0

f (t) y(t)

2. Here,

ẋ(0) +
∫ t

0 x(0) +
∫ t

0 •
f (t)+ + x(t)

3. Here,

1
s

1
s

F(s)+

ẏ(0)

+ +

y(0)

+ Y(s)
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This implies that

Y(s) =
1
s

(
y(0) +

1
s
(
ẏ(0) + F(s)

))
=

sy(0) + ẏ(0) + F(s)
s2 .

•
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Prelab Assignments

Complete these assignments before the lab. Show all work for credit.

1. Consider the differential equation

ẍ(t) + 2ẋ(t) + 40x(t) = f (t).

(a) Draw a time-domain block diagram representation of the

original differential equation in terms of integrators, amplifiers,

summing junctions, and splitting junctions. Don’t forget the

initial conditions. Label all connections between components to

show the corresponding signals.

(b) Draw a frequency-domain block diagram representation for

the case of 0 initial conditions and use this to express X(s) :=

L
[
x(#)

]
(s) in terms of F(s) := L

[
f (#)

]
(s) and a transfer func-

tion H(s).

2. Consider the differential equation

1
6

θ̈(t) + 2θ̇(t) + 9.8 cos θ(t) = 0

(a) Draw a time-domain block diagram representation of the orig-

inal differential equation in terms of integrators, amplifiers,

summing junctions, splitting junctions, and a component repre-

senting the nonlinear relationship θ 7→ cos θ. Don’t forget the

initial conditions. Label all connections between components to

show the corresponding signals.
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Lab instructions1 1 These notes are an edited version of
handouts authored by Andrew Alleyne.

In this lab you will learn how to use the simulink environment

in matlab to model and simulate dynamic systems using block

diagrams. You can think of simulink as a tool that allows program-

ming in a graphical manner. Instead of large amounts of code, you

can simply add pre-made components into a “model” window and

connect the components’ inputs and outputs to create a system that

can be simulated in simulink. The progress of the simulation can be

monitored while the simulation is running, and the final results can

be made available in the matlab workspace when the simulation is

complete.

The steps required in order to simulate a system using simulink

are listed below.

1. Write the governing differential equations of the system.

2. Create a partial block diagram representing the relationship be-

tween the highest derivative in these equations and the remaining

terms.

3. Use relations between the inputs and outputs of the partial block

diagram to created a full simulation model using only integrators,

amplifiers, summing, and splitting junctions.

4. Convert your block diagram to a simulink representation and

assign appropriate parameters to all components.

5. Decide on configuration parameters and run the simulation.

6. Display and analyze the results.

To build a simulink representation, you must first add individual

components to your model from the simulink component libraries.

You can do this by opening a library, selecting the icon for the de-

sired component, and either dragging the component into the model

window, or entering <ctrl>+i on your keyboard.

The components needed for this lab are contained in the Contin-

uous Library (Integrator), the Math Library (Gain and Sum), Source
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Library (Step), and the Sinks Library (Scope and To Workspace). Each

library can be opened by double-clicking on its icon in the Simulink

Library Browser. Browse through each of these libraries to become

acquainted with the available components. The function of each com-

ponents should be obvious from its title. However, if you are unsure

about a component’s function or its use, double-click on the com-

ponent to open its dialog box and then select Help to get a detailed

explanation of its use.

Input and output ports on individual components are represented

by angle brackets “>” pointing into or away from the component, re-

spectively. To connect two components, click on the output port, drag

the marker to the corresponding input port, and release the mouse

button. A line with an arrowhead should now appear showing the

connection. To split a connection, right-click on the desired location

of the splitting junction, drag the new connection to the appropriate

input port, and release the mouse button.

A connection or component can be deleted in simulink by high-

lighting it and hitting the <delete> key on your keyboard. To change

the position of a component, you can simply drag it from one loca-

tion to another and its connections will remain intact. Finally, if you

want to change the size of a component for readability, select the

component and drag any corner until it is the desired size.

Configuration parameters are set by entering <ctrl>+E on your

keyboard. You will find settings that determine the simulation du-

ration, govern how simulink approximates the solution to the cor-

responding differential equation, and control data logging during

simulation. As an example, to ensure that data is output every 0.01

s, independently of the steps taken by the solver, select the Data Im-

port/Export pane. Scroll down and expand the “Additional param-

eters” area. Select “Produce specified output only” in the “Output

options” drop-down menu and enter 0:0.01:10 in the “Output times”

text area.
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A mechanical suspension

Consider the motion of the mechanical suspension shown below, able

to translate along the direction described by the vector î.

1 kg

f (t)î

40 N/m

x(t) m

î
2 Ns/m

The displacement of the 1 kg mass is governed by the differential

equation

ẍ(t) + 2ẋ(t) + 40x(t) = f (t). (18)

If X(s) := L
[
x(#)

]
(s) and F(s) := L

[
f (#)

]
(s), then

X(s) =
(s + 2)x(0) + ẋ(0) + F(s)

s2 + 2s + 40
. (19)

1. Refer to the time-domain block diagram found in the prelab as-

signment. Construct a simulink representation of this dynamic

system by opening a new simulink model window, adding the

corresponding components, and connecting these appropriately.

Use a Constant component from the Library Browser to represent

a constant f (t). Note that the orientation of the Gain components

may be reversed by selecting the corresponding icons and entering

<ctrl>+i on the keyboard. Double-click on each Gain component to

enter the corresponding numerical constant.

2. Add a Scope component and a To Workspace component to monitor

x(t) during simulation and store the corresponding time history

to disk, respectively. Double-click on the To Workspace component

and select “Array” in the “Save Format” drop-down menu. Enter

“position” in the “Variable name” field, and 2000 in the “Limit

data points to last” field.
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3. Free response:

(a) Enter initial conditions for the two integrators corresponding

to an initial position of 0.1 m and an initial velocity of 0 m/s.

Enter 0 for the value of the constant input. Enter <ctrl>+s on

your keyboard to save your simulink model to the c\matlab\me340

directory.

(b) Double-click on the Scope and click the run button to start the

simulation. Click on the “Autoscale” icon to fit the graph to the

window. In the matlab command window, enter

>> time_ic=tout;

>> pos_ic=position;

>> plot(time_ic, pos_ic)

to save the sequence of time steps and the position time history

to the matlab variables time_ic and pos_ic, respectively, and

to graph x(t).

(c) In the matlab command window, use the tf command to

construct a transfer function equal to the right hand side of (19)

when F(s) = 0, x(0) = 0.1, and x′(0) = 0, and store the result in

the matlab variable sys. Enter

>> [pos_imp,time_imp] = impulse(sys, 10);

to generate and graph the corresponding free response, and

to store the resulting sequence of time steps and positions in

time_imp and pos_imp, respectively.

4. Step response:

(a) Substitute a Step component from the Library Browser for the

Constant component representing the input. Double-click on the

Step component, enter 0 in the “Step time” and “Initial value”

fields, and enter 20 in the “Final value” field.

(b) Enter 0 for the initial conditions of the two integrators and

click the run button to start the simulation.
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5. Read Report Assignment 1. and produce all the plots before you

go on to the next section.

A nonlinear pendulum

Consider the motion of the slender rod of length ℓ = 25 cm and mass

M = 8 kg shown below, able to rotate about a horizontal axis A that

is perpendicular to the rod, under the influence of a vertical gravi-

tational field of acceleration g = 9.8 m/s2 and a viscous damping

torque proportional to the angular velocity θ̇(t) with proportionality

constant b = 0.2 Nms.

ℓ, M

A

θ(t)

The orientation θ(t) of the rod is governed by the differential equa-

tion
Mℓ2θ̈(t)

3
+ bθ̇(t) +

Mgℓ cos θ(t)
2

= 0 (20)

This equation is nonlinear because of the cos θ(t) term. Such a non-

linearity may be represented in simulink using a Trigonometric Func-

tion component from the Math Library.

1. Refer to the time-domain block diagram found in the prelab as-

signment. Open the simulink representation of the mechanical

suspension with constant input equal to 0, and select the “Save

As...” menu item from the “File” menu to save a copy to disk with

a new name. Add a Trigonometric Function component from the

Math Library and double-click on this component to select the

appropriate function. Modify the connections between the compo-

nents to represent the nonlinear pendulum. Double-click on each

Gain component to enter the corresponding numerical constant.
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2. Enter 0 for the initial conditions of the two integrators, enter

<ctrl>+s on your keyboard to save your model, and click the run

button to start the simulation.

3. For θ(t) ≈ −π/2, we obtain the linear approximation cos θ(t) ≈

π/2 + θ(t). The governing equation becomes

Mℓ2θ̈(t)
3

+ bθ̇(t) +
Mgℓ

2
θ(t) = −Mgπℓ

4
. (21)

Make the appropriate modifications to your simulink model and

select the “Save As...”’ menu item from the “File” menu to save to

disk with a new name. Simulate this linear approximation with

different initial conditions and compare to the nonlinear simula-

tion with same initial conditions. At what initial conditions does

the linear approximation become poor? Note: you may want to

store the results of your simulations to different matlab variables

or use the hold command with the plot command.

A quarter-car model

Consider the quarter-car vehicle-suspension model shown below,

where the mass m = 250 kg represents 1/4 of the mass of a car

body, and the spring with stiffness k = 2000 N/m and damper with

damping coefficient b = 3000 Ns/m represent a suspension spring

and shock absorber, respectively. The position x(t) of the car body

equals 0 when the road input r(t) equals 0 and the spring supports

the weight of the body.

m

k

x(t)

r(t)

î
b
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The vertical displacement of the body is governed by the differential

equation

mẍ(t) + bẋ(t) + kx(t) = bṙ(t) + kr(t) (22)

With x(0) = ẋ(0) = r(0) = 0, the relationship between the ground

input r(t) and the displacement x(t) is described by the transfer

function

H(s) =
bs + k

ms2 + bs + k
(23)

1. Construct a simulink model using a Transfer Fcn component from

the Continuous Library and double-click on this component to en-

ter the polynomial coefficients for the numerator and denominator

of H(s). Let the input signal be a step of size 0.3 m and simulate

the corresponding dynamic system.

2. Use two To Workspace components to store the input and output

time histories to the matlab workspace and plot the difference

z(t) = x(t)− r(t).



laboratory handouts, me 340 39

Report Assignments

Complete these assignments during the lab. Show all work for credit.

1. In the analysis of the mechanical suspension:

(a) Use the matlab subplot command to graph the free response

using the simulink output with i) the variable-step ode45 inte-

grator with relative tolerance 10−3; ii) the fixed-step integrator

ode3 with automatic step-size; and iii) the fixed-step integra-

tor ode3 with step size 0.1; as well as using the output of the

impulse command. You can modify the simulation tolerances

by putting focus on the simulink model, entering <ctrl>+e on

your keyboard, and adjusting the “Solver options” entries. Give

the plot the title “Plot 1: Simulation and Analytical Response

of a Mass-Spring-Damper System”, and label the x and y axes.

Explain the observed differences.

(b) Use the matlab hold command to plot several step responses

in the same graph. Use the simulink output with different

values in the “Final value” field of the Step component.

2. In the analysis of the nonlinear pendulum:

(a) Use the matlab hold command to plot the solution of the

nonlinear and linearized models for initial conditions where

the linear approximation is invalid. Give the plot the title “Plot

2: Linear and Nonlinear Simulation in Nonlinear Range”, and

include a legend, as well as labels for the x and y axes.

(b) Propose a range of initial conditions for which the linear ap-

proximation is reasonable. Justify your answer.

(c) A nonlinear model is typically more accurate than the linear

model, but also more costly to implement. What engineering

considerations might determine whether a linear approximation

is appropriate?

3. In the analysis of the quarter-car model:
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(a) Plot the suspension travel z(t) when the input is a 0.3 m step.

Give the plot the title “Plot 3: Suspension Travel of the Quarter-

Body Model to a 30 cm Curb”, and label the x and y axes.

(b) Plot the body position x(t) when the input is a 0.3 m step.

Give the plot the title “Plot 4: Quarter-Body Position Response

to a 30 cm Curb”, and label the x and y axes.

(c) Suppose that you were designing the suspension so that the

passengers of the vehicle would be protected from the effects

of the car hitting the curb. What dynamic information would

you want to obtain from the quarter-body simulation so that

you could tell if a person could be hurt by the collision with the

curb? For example, which signal in your block diagram would

provide the dynamical information that is most closely related

to an injury? Explain your answer.
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