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Laboratory handout 3 – First-order systems

A signal is a function of time, denoted by t. The notation x(t) identi-

fies the signal x as a time-dependent function.

An exponentially decaying signal is of the form x(t) = Ce−γt in

terms of an initial value C and a decay rate γ > 0. The signal equals

a fraction 1/e of its initial value after the characteristic time scale

t = 1/γ.

When the slowest decay rate γ = min1≤i≤n γi in a sum of expo-

nentially decaying signals

x(t) = C1e−γ1t + C2e−γ2t + · · ·+ Cne−γnt (1)

is an order of magnitude smaller than the other decay rates, then

the corresponding time scales are well separated. In this case, if the

initial values C1, C2, . . . are all of the same order of magnitude, then

measurements of x(t) for t > 1/γ are dominated by the component

with the slowest decay rate, as long as its magnitude remains above

the noise floor.

•

If measurements on a physical system result in a signal x(t) that is

dominated by the solution to a differential equation of the form

dx
dt

(t) +
1
T

x(t) = f (t) (2)

for some T > 0 and some given function f (t), then the system is said

to be linear, first-order, time-invariant, and stable.

If f (t) = 0 for t ≥ 0, the solution

x(t) = x(0)e−t/T (3)

is a free response of the system. This is an exponentially decaying

signal whose characteristic time scale T is known as the time con-

stant of the system.
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If f (t) = 1/T for t ≥ 0 and x(0) = 0, the solution

x(t) = 1 − e−t/T (4)

is a step response of the system. For t ≫ 1, this is approximately

equal to the steady-state response xss(t) = 1. The difference xss − x(t)

is an exponentially decaying signal with characteristic time scale T.

•

If the time constant T of a linear, first-order, time-invariant, stable

system is unknown, it may be estimated from measurements. Such

an approach is an example of system or plant identification.

If it is possible to engineer the system so that f (t) = 0 for t ≥ 0,

then T may be estimated from the characteristic time after which the

signal x(t) equals the fraction 1/e of its initial value x(0), since in this

case

x(t) = x(0)e−t/T . (5)

If it is possible to engineer the system so that f (t) equals the con-

stant c for t ≥ 0 and x(0) = 0, then T may be estimated from the

characteristic time after which the difference between the signal x(t)

and its steady-state value xss := limt→∞ x(t) equals the fraction 1/e

of its initial value x(0)− xss, since in this case

x(t) = cT(1 − e−t/T) (6)

and xss = limt→∞ x(t) = cT.

Exercises

1. Determine the decay rate for the exponentially decaying signal

x(t) = 2e−t/2.

2. After what time does the value of the exponentially decaying

signal x(t) = 3e−t/4 equal the fraction 1/e of its initial value?

3. Determine the slowest decay rate for the sum of exponentially
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decaying signals

x(t) = 6e−t +
1

100
e−10t − e−t/2.

4. Suppose that the signal

x(t) = 4e−t/10 + e−8t + 3e−2t

is measured in the presence of noise distributed uniformly in

the interval [−0.5, 0.5]. Are the time scales well separated? Are

measurements on the time interval [10, 20] dominated by the com-

ponent with the slowest decay rate?

5. Find the free response of a linear, first order system with time

constant 3 and initial value 5/2.

6. Find the unit step response of a linear, first order system with time

constant 6.

7. Suppose that the response x(t) of a linear, first order system with

f (t) = 0 for t ≥ 0 is approximately equal to the fraction 2/e of

its initial value x(0) after time 2. Estimate the corresponding time

constant.

8. Suppose that the response x(t) of a linear, first order system with

f (t) constant for t ≥ 0 and x(0) = 0 differs from its steady-state

value by approximately a fraction 1/e of the initial difference after

time 4. Estimate the corresponding time constant.

•

Solutions

1. Here, γ = 1/2.

2. Here, x(4) = 3e−1 = x(0)/e, i.e., at t = 4.

3. The slowest decay rate equals min{1, 10, 1/2} = 1/2.

4. The slowest decay rate equals 1/10. The corresponding time scale

is 20 times larger than the next faster decay rate, so the decay rates
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are well separated. The slowest component is larger than 0.5 as

long as t < 10 ln 4/0.5 ≈ 20.8. The other two components add

up to less than 10−8 for t > 10. We conclude that the component

with slowest decay rate dominates measurements on the interval

[10, 20], even in the presence of noise.

5. The free response equals

x(t) =
5
2

e−t/3.

6. The unit step response corresponds to the case that f (t) = 1 for

t ≥ 0 and x(0) = 0. In this case,

x(t) =
∫ t

0
e−(t−τ)/6 dτ = 6(1 − e−t/6).

7. The free response equals

x(t) = x(0)e−t/T .

It follows that

x(2)
x(0)

= e−2/T ≈ 2
e
⇒ T ≈ 2

1 − ln 2
≈ 6.52.

8. The step response equals

x(t) = cT(1 − e−t/T).

and xss = limt→∞ x(t) = cT. It follows that

x(4)− xss

x(0)− xss
= e−4/T ≈ 1

e
⇒ T ≈ 4.

•
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Prelab Assignments

Complete these assignments before the lab. Show all work for credit.

1. Determine the decay rate for the exponentially decaying signal

x(t) = 4e−t/3.

2. After what time does the value of the exponentially decaying

signal x(t) = 2e−t/6 equal the fraction 2/e of its initial value?

3. Determine the slowest decay rate for the sum of exponentially

decaying signals

x(t) =
1
2

e−t/3 − 1
3

e−2t + 18e−t/2.

4. Suppose that the signal

x(t) = 2e−t/3 + e−t + 3e−t/2

is measured in the presence of noise distributed uniformly in the

interval [−0.25, 0.25]. Are the decay rates well separated? Are

measurements dominated by the component with the slowest

decay rate on any time interval?

5. Find the free response of a linear, first order system with time

constant 3/2 and initial value 4.

6. Find the two-units step response of a linear, first order system

with time constant 3.

7. Suppose that the response x(t) of a linear, first order system with

f (t) = 0 for t ≥ 0 is approximately equal to the fraction 1/e of its

initial value x(0) after time 5/3. Estimate the corresponding time

constant.

8. Suppose that the response x(t) of a linear, first order system with

f (t) constant for t ≥ 0 and x(0) = 0 differs from its steady-state

value by approximately a fraction 2/e of the initial difference after

time 3/2. Estimate the corresponding time constant.
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9. A linear, first order system whose response x(t) satisfies the differ-

ential equation

T
dx
dt

(t) + x(t) = K f (t)

has time constant T and gain K. How would you estimate T and K

from measurements of the response x(t) when f (t) = 1 for t ≥ 0?
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Lab instructions1 1 These notes are an edited version of
handouts authored by Andrew Alleyne.

In this lab, you will investigate two approximately linear, first-order

systems. Linear first-order systems describe many physical phenom-

ena. For example, the time history of a capacitor’s voltage in a simple

RC electrical circuit is described by a linear first- order system. The

temperature history of an oven that is losing heat from conduction or

convection is also described by a linear first-order system.

A major goal of engineering is to develop mathematical models of

physical systems so that these models can be used to predict the sys-

tem response under various loading conditions. In control system

design, these so-called “plant” models are used as the basis for the

formulation of controllers. For example, once an oven’s temperature

as a function of heat input has been mathematically modeled, one

can design a controller to keep the oven at a desired temperature.

An important step in developing such mathematical models is a

process called “plant identification” or “identification analysis”. In

any given mathematical model, there are physical parameters, such

as thermal conductivity, time constants, or elastic moduli that must

be determined. The plant identification step attempts to generate an

experimental estimate for these parameters.

In this lab exercise, numerical values for the time constants of two

linear first-order systems will be determined. These time constants

will be obtained using two simple methods. In addition, non-ideal

behavior will be studied in terms of the actual physical system that is

being investigated.

Leaking tank

In the first experiment, you will use the time history of the water

level in a leaking tank to estimate the flow resistance across a small

outlet. To develop a model that allows us to predict the time history

of the water level in the tank, you rely on the following physical

principles and assumptions:

• Conservation of mass: the rate of change of mass in the tank
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equals rate at which mass enters the tank minus the rate at which

mass leaves the tank.

• Constant temperature: the density ρ of the water is unchanged.

• Constant cross section: the volume of water is proportional to the

water level h.

• The flow is laminar: the mass flow rate through an outlet is pro-

portional to the pressure difference across the outlet.

• The principle of hydrostatic pressure: the pressure at the bottom of

the tank exceeds the pressure above the water by ρgh.

These imply that

A
dh
dt

(t) +
g
R

h(t) = qin(t), (7)

where A is the cross-sectional area, g is the acceleration of gravity,

R is the resistance at the outlet, and qin(t) is the time history of the

volume flow rate into the tank. This is a linear, first-order system

with time constant T = AR/g. If you measure A and estimate T from

measurements of the response x(t) to some input qin(t), then you can

estimate the resistance R.

Experimental procedure

1. Turn on the equipment:

(a) Have the TA show you how to turn on the Process Interface.

(b) Log into the PC and start matlab to collect the tank’s height

data:

• Start matlab using the icon found on your desktop.

• Inside matlab, open the “read-only” file TankLeak.mdl

located in the directory N:\HydraulicsLab\TankExperiment.

• Save the file with the name lab1tank<yourNetID>.mdl in the

directory C:\matlab\me340\.

• Change matlab’s current directory to the location where

your model file was saved by typing cd c:\matlab\me340 at

the matlab command prompt.
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2. Measure the cross-sectional area A of the tank and record this

value for later use.

3. Calibrate the water level sensor:

(a) Consider the height of the water when it is level with the top

of the hole in the rubber stopper as hbottom = 0. Measure the

vertical distance between hbottom and the 100 mark. Record this

value as htop ( ̸= 100).

(b) Collect calibration data for the float sensor potentiometer.

• Turn on the Process Interface unit.

• Make sure the water level in the tank is at the top of the hole

in the rubber stopper.

• Record the value, in mA, that the Digital Display Module

reads.

• The sensor current is passed over a 100 Ω resistor within

the Process Interface 38-200, so the above current signal gets

converted to a voltage signal, which is sampled by the PC.

Convert current to voltage and record it as Vbottom.

(c) Use a finger to block the hole in the rubber stopper between

the two tanks.

(d) Open the manual valve MV2.

(e) Start the pump using the switch on the extreme lower left of

the Process Interface panel.

(f) When the water level reaches the 100 mark:

• Close MV2 and turn off the pump.

• If you exceed the 100 mark, open the drain valve slightly

until you are within 1 or 2 mm of the 100 mark.

(g) Verify that the Digital Display Module reads approximately 20

mA. Calculate the voltage corresponding to reading shown on

the Digital Display Module and record this voltage as Vtop.

(h) The float sensor is linear, i.e., the relationship between the

height of the float sensor and the voltage read by the computer
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is of the form h(t) = aV(t) + b, where a and b are calibration

parameters. Since Vtop, Vbottom, htop, and hbottom are all known,

find the numerical parameters a and b.

4. Acquire data:

(a) When you are ready to collect data, press the simulink run

button (green arrow). This will start the build process of your

simulink model and run the data collection. It will take about

20 seconds for the model to start running.

(b) When you see data being logged to the simulink Scope win-

dow, remove your finger from the exit nozzle to start water flow.

(c) Observe in the plot window that the computer is recording the

height data in terms of voltage vs. time.

(d) Let the tank drain for the specified 180 seconds. The water

level should be just above the hole in the rubber stopper at that

point.

(e) After completion of the 180 second data collection, the sam-

pled data is stored in the matlab variable Height_inVolts.

5. Analyze data:

(a) In matlab, plot your raw voltage data:

>>plot_time = Height_inVolts(:,1);

>>Volts = Height_inVolts(:,2);

>>plot(plot_time, Volts)

(b) Convert the voltage data into height data using the relation-

ship h(t) = aV(t) + b (using your values of a and b):

>> height = a*Volts + b;

(c) Plot height vs. time. (The plot should decay to zero if a and b

were calculated correctly):

>>plot(plot_time, height)

(d) From the plotted data, estimate the time constant T. Assign

the corresponding value # to a matlab variable:
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>>tau = #;

(e) Compute the theoretical response of the first order system (7):

>>thheight = height(1) * exp(-plot_time/tau);

(f) Plot the theoretical and experimental height data versus time.

Title the plot, label both axes (with units), add a legend, and

print it out (use the doc command to access the matlab help

browser for information on how to add a title, labels, and leg-

ends):

>>plot(plot_time, height, ’:’, plot_time, thheight, ’-’)

Hydraulic motor

In the second experiment, you will use the time history of the speed

x(t) of a hydraulic motor to estimate the gain and time constant of

the first-order system

T
dx
dt

(t) + x(t) = Ku(t) (8)

where u(t) is the command input to a proportional directional con-

trol valve. This has the ability to control the direction of the hy-

draulic fluid flow and the proportion of the flow that gets transmitted

through the valve. We assume that the characteristic time scales of

the valve and the speed sensor are well separated from the (slower)

time scale of the motor. However, such assumptions may not always

hold and you must be careful when examining the data.

Experimental procedure

1. Turn on the equipment:

(a) Confirm that a circuit has been constructed to run the hy-

draulic motor using the Parker Hannifin BD90 servo valve.

• The control signal comes from one of the analog output

channels on the MW2000 and should already be connected
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to the co-ax plug labeled EHV Input (command input) on the

Parker Hannifin Hydraulic Trainer stand.

• The hydraulic motor’s rotational speed is measured via a

magnetic proximity sensor, whose output is available for

measurement using the co-ax connection located on the side

of the big gray box mounted on the trainer stand. It is labeled

“tach” and should already be connected to channel 7 on the

MW2000, where the frequency signal output by the sensor is

converted to a DC voltage that is proportional to the motor

speed. In particular, at 2500 rpm, the recorded voltage is 5 V.

(b) If you have not already, close your simulink model from the

first experiment.

(c) In matlab, open the “read-only” file motorstep.mdl located

in the directory N:\HydraulicsLabMotorExperiment. An empty

plot corresponding to the plot of motor speed x(t) and open

loop input u(t) should appear. Save the file with the name

lab1motor<yourNetID>.mdl in the directory C:\matlab\me340\.

(d) Confirm that what you have on the screen is an open loop

controller that has been developed for you. The purpose of the

simulink open loop controller is to generate step inputs to

the motor system and to record the output tachometer speed.

Notice that the step input is in Volts, and the tachometer output

is in rpm. The simulink block diagram allows you to change

the magnitude of the step input.

(e) Change matlab’s current directory to the location you just

saved your model file by typing cd c:\matlab\me340 at the

matlab command prompt.

(f) Wait for your TA to walk you through the steps required to

safely start the hydraulic system.

(g) Make sure that the system pressure is set via the relief valve at

300 psi.

2. Acquire data:
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(a) In your simulink block diagram, set the Step block’s “Final

Value” to 1 V.

(b) Click the simulink start arrow to start the build process.

When the build process is finished your step response data will

be collected for the given step input. By default the recorded

data is saved to a multi-dimensional array called Velocity_RPM.

(c) If the recorded data is acceptable (i.e. you see a step response),

store the recorded data to matlab variables with unique

names:

>>run25V_time = Velocity_RPM ( : , 1 ) ;

>>run25V_RPM = Velocity_RPM ( : , 2 ) ;

>>run25V_ScaledInput = Velocity_RPM ( : , 3 ) ;

(d) Repeat the above data collection for step inputs of 1.50 V and

2 V, but make sure to use unique variable names in the previous

step.

3. Analyze data:

(a) Use system identification to estimate the time constant T and

steady state gain K for each data set.

(b) For the 1.50 V data set, compute the theoretical first order

response given the values for the time constant and gain that

you have just obtained.

(c) Compare the theoretical and corresponding experimental

response by plotting them on the same axes. You should shift

the data so that the response occurs at the same time on the

plot. Label the plot appropriately and print it out. Also record

the values of T and K on the plot.
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Report Assignments

Complete these assignments during the lab. Show all work for credit.

1. In the experiment on the leaking tank, you engineered the system

to correspond to a particular flow rate qin(t) and initial value h(0),

and then used your knowledge of the response h(t) to estimate T.

Describe qin(t) and h(t) using the appropriate terminology.

2. Record your measured and estimated values of hbottom, htop,

Vbottom, Vtop, a, b, and T with the appropriate units.

3. Use a measurement of the cross-sectional area A and the value

9.81 m/s2 for the acceleration of gravity to estimate the resistance

R across the outlet and record this with the appropriate unit.

4. Plot the theoretical and experimental height data versus time.

5. Critically evaluate the assumptions made in modeling the leaking

tank as a linear, first order system over a large range of water

levels.

6. In the experiment on the hydraulic motor, you engineered the

system to correspond to a particular command input u(t) and

initial value x(0), and then used your knowledge of the response

x(t) to estimate T. Describe u(t) and x(t) using the appropriate

terminology.

7. Record your estimated values of T and K for each of the three step

inputs with the appropriate units.

8. Estimate the delay between the step input in the command signal

and the system response. What is a possible source of this delay?

Does it affect your estimates of T and K?

9. Use the experimental data to critically evaluate the assumption

that the hydraulic motor can be modeled as a linear, first order

system over a large range of inputs.
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