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Laboratory handout 4 – Second-order systems

In this handout, material and assignments marked as optional can

be skipped when preparing for the lab, but may provide a useful

resource at other times during the course.

•

An exponentially decaying harmonic signal is of the form

x(t) = Ae−γt cos(ωt − θ) (1)

in terms of an initial amplitude A > 0, a decay rate γ > 0, an

angular frequency ω > 0, and a phase shift θ.

t

Figure 1: An exponentially decaying
harmonic signal.

The signal crosses 0 for some t = t∗, provided that

ωt∗ = θ +
π

2
+ nπ, (2)

for some integer n. Since

dx
dt

(t) = −A
√

ω2 + γ2e−γt cos
(

ωt − θ − arctan
ω

γ

)
, (3)

the signal has a sequence of local maxima and minima for t = t∗∗,

where

ωt∗∗ = θ + arctan
ω

γ
+

π

2
+ nπ, (4)

for some integer n.

The elapsed time between consecutive maxima (minima) of x(t)

equals 2π/ω. The ratio between the values of x(t) at consecutive
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maxima (minima) equals the logarithmic decrement e2πγ/ω. The

absolute value of the ratio between the values of x(t) at consecutive

extrema equals eπγ/ω.

•

If measurements on a physical system result in a signal x(t) that is

dominated by the solution to a differential equation of the form

d2x
dt2 (t) + 2ζωn

dx
dt

(t) + ω2
nx(t) = f (t) (5)

for some ωn, ζ > 0 and some given function f (t), then the system

is said to be linear, second-order, time-invariant, and stable. The

constants ωn and ζ are the natural frequency and damping ratio,

respectively.

The unit impulse response of the system is given by the convolu-

tion

h(t) =
(

eγ1# ∗ eγ2#
)
(t) :=

∫ t

0
eγ1τeγ2(t−τ) dτ (6)

where u = γ1 and u = γ2 are the roots of the characteristic polyno-

mial

u2 + 2ζωnu + ω2
n = 0, (7)

i.e.,

γ1,2 = −ζωn ± ωn

√
ζ2 − 1 = −ζωn ± jωn

√
1 − ζ2. (8)

The roots lie in the complex plane and are either purely real or com-

plex with imaginary parts of opposite sign.

In particular, for 0 < ζ < 1, the system is underdamped and

h(t) =
eγ1t − eγ2t

γ1 − γ2
=

e−ζωnt

ωd
sin ωdt, (9)

where ωd = ωn
√

1 − ζ2 is the damped natural frequency. In this

case, the unit impulse response is an exponentially decaying har-

monic signal with initial amplitude 1/ωd, decay rate ζωn and angu-

lar frequency ωd.
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t

Figure 2: The unit impulse response of
an underdamped second-order system.

For ζ > 1, the system is overdamped and

h(t) =
eγ1t − eγ2t

γ1 − γ2
=

e−ζωnt

ωn
√

ζ2 − 1
sinh

(
ωn

√
ζ2 − 1 t

)
. (10)

In this case, the unit impulse response is a sum of exponentially

decaying terms, and does not oscillate about 0.

t

Figure 3: The unit impulse response of
an overdamped second-order system.

Finally, for ζ = 1, the system is critically damped and

h(t) = te−ωnt. (11)

In all three cases, h(0) = 0 and dh/dt(0) = 1.

•

For arbitrary f (t), the corresponding solution to (5) is given by

x(t) =
(

2ζωnx(0) +
dx
dt

(0)
)

h(t) + x(0)
dh
dt

(t) +
(

f (#) ∗ h(#)
)
(t),

(12)

where (
f (#) ∗ h(#)

)
(t) :=

∫ t

0
f (τ)h(t − τ)dτ. (13)
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If f (t) = 0 for t ≥ 0, the solution

x(t) =
(

2ζωnx(0) +
dx
dt

(0)
)

h(t) + x(0)
dh
dt

(t) (14)

is a free response of the system. In particular, for 0 < ζ < 1 and

dx/dt(0) = 0,

x(t) = x(0)
e−ζωnt√

1 − ζ2
cos

(
ωdt − π

2
+ arccos ζ

)
. (15)

If f (t) = c for t ≥ 0 and x(0) = dx/dt(0) = 0, the solution

x(t) = c
∫ t

0
h(τ)dτ (16)

is a step response of the system. In particular, for 0 < ζ < 1,

x(t) =
c

ω2
n

(
1 − e−ζωnt√

1 − ζ2
cos

(
ωdt − π

2
+ arccos ζ

))
. (17)

For t ≫ 1, this is approximately equal to the steady-state response

xss(t) = c/ω2
n. The difference xss − x(t) is an exponentially decaying

harmonic signal that equals the free response with x(0) = c/ω2
n and

dx/dt(0) = 0.

t
tr tp ts

Figure 4: A step response for an under-
damped system, including the rise time
tr , the peak time tp, and the settling
time ts.

•

If the natural frequency ωn and damping ratio ζ of a linear,

second-order, time-invariant, stable system are unknown, they may
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be estimated from measurements. Such an approach is an example of

system or plant identification.

If it is possible to engineer the system so that f (t) = 0 for t ≥

0, then ωn and ζ may be estimated from the free response with

dx/dt(0) = 0. The system is underdamped if this is oscillatory as

in (15), and overdamped otherwise1. 1 It is, in practice, impossible to achieve
a critically damped system, but for
ζ ≈ 1, it may be difficult to distin-
guish between an underdamped and a
overdamped system in the presence of
measurement noise.

In the underdamped case, the damping ratio ζ may be estimated

from the absolute value of the ratio of two consecutive extrema, since

this equals eπζ/
√

1−ζ2 , or from the logarithmic decrement, since this

equals e2πζ/
√

1−ζ2 . The natural frequency may be estimated from

the time elapsed between consecutive zero crossings or between

consecutive extrema, since these both equal π/ωd.

If it is possible to engineer the system so that f (t) equals the

constant c for t ≥ 0 and x(0) = dx/dt(0) = 0, then the nat-

ural frequency ωn may be estimated from the steady-state value

xss := limt→∞ x(t) = c/ω2
n. The damping ratio ζ may then be esti-

mated from the logarithmic decrement for the difference x(t)− xss,

since this equals e2πζ/
√

1−ζ2 , or from the elapsed time between con-

secutive maxima, since this equals 2π/ωd. If only a single maximum

is clearly visible in an experimental measurement, the damping ratio

may be estimated from

1. the rise time tr corresponding to the time that x(t) first crosses

xss, since this equals
π − arccos ζ

ωd
; (18)

2. the peak time tp corresponding to the time that x(t) first peaks,

since this equals π/ωd;

3. the maximum relative overshoot corresponding to the ratio

x(t)− xss

xss
(19)

at the peak time, since this equals e−πζ/
√

1−ζ2 ; or

4. the settling time ts corresponding to the time after which x(t)

remains within 2% of xss, since this is approximately 4/ζωn.
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A graphical representation of this quantities is shown in Fig. 4.

•

Exercises

1. Express the signal x(t) = −e−t cos 2t as an exponentially decaying

harmonic signal.

2. Find all local extrema of the exponentially decaying harmonic

signal x(t) = e−2t cos(t − π/4) and determine the elapsed time

between consecutive maxima.

3. Determine the logarithmic decrement for the exponentially decay-

ing harmonic signal x(t) = 3e−t/2 cos(3t − 2) and relate this to the

ratio between successive extrema.

4. Measurements on a mechanical system result in a signal that is

dominated by the solution to the differential equation

20
d2x
dt2 (t) + 10

dx
dt

(t) + 18x(t) = 2.

Determine whether the system is overdamped or underdamped.

5. For what value of c is the mass-spring-damper system, governed

by the differential equation

m
d2x
dt2 (t) + c

dx
dt

(t) + kx(t) = f (t),

critically damped?

6. Find the unit step response of a linear, second-order, time-invariant

system with natural frequency 2 and damping ratio 1/2.

7. Compute the rise time, peak time, and settling time for the unit

step response of the linear, second-order, time-invariant system

with natural frequency ωn = 4 and damping ratio ζ = 0.8.
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8. Suppose that the maximum relative overshoot of the step response

of a linear, second-order, time-invariant system equals approxi-

mately 0.2. Estimate the damping ratio.

9. Describe the dependence of the rise time on the damping ratio ζ

on the interval [0, 1] and determine its minimum value.

•

Solutions

1. From the general form of an exponentially decaying harmonic

signal, γ = −1, ω = 2, A cos θ = −1, and A sin θ = 0. This implies

that A = 1 and θ = π, i.e., x(t) = e−t cos(2t − π).

2. Here,
dx
dt

(t) = −
√

5e−2t cos
(

t − π

4
− arctan

1
2

)
and

d2x
dt2 (t) = 5e−2t cos

(
t − π

4
− 2 arctan

1
2

)
.

Minima are therefore found at

t =
3π

4
+ arctan

1
2
+ 2nπ

and maxima are found at

t = −π

4
+ arctan

1
2
+ 2nπ.

The elapsed time between consecutive maxima equals 2π.

3. Here, the logarithmic decrement equals eπ/3. Extrema occur at

tn =
2
3
+

π

6
+

1
3

arctan 6 +
nπ

3

and are separated in time by π/3. It follows that

x(tn+1)

x(tn)
=

3e−tn/2e−π/6 cos(3tn + π − 2)
3e−tn/2 cos(3tn − 2)

= −e−π/6

i.e., the negative square root of the logarithmic decrement.
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4. Here,
d2x
dt2 (t) +

1
2

dx
dt

(t) +
9
10

x(t) =
1

10
,

and it follows that ω2
n = 9/10 and 2ζωn = 1/2 ⇒ ζ = 3/4

√
10 < 1,

i.e., the system is underdamped.

5. Here,

2ζωn =
c
m

, ω2
n =

k
m

⇒ ζ =
c

2
√

mk

The system is critically damped when c = 2
√

mk.

6. Here,

h(t) =
1√
3

e−t sin
√

3t.

If f (t) = 1 for t ≥ 0, the unit step response equals the convolution(
f (#) ∗ h(#)

)
(t) =

1
4

(
1 − 2√

3
e−t cos

(√
3t − arctan

1√
3

))
.

7. Here, ωd = 12/5. It follows that the rise time equals approxi-

mately 1.04, that the peak time equals approximately 1.31, and that

the settling time equals 1.25.

8. Here,

e−πζ/
√

1−ζ2 ≈ µ ⇒ ζ ≈ − ln µ√
π2 + ln2 µ

For µ = 0.2, ζ ≈ 0.46.

9. The function

ζ 7→ π − arccos ζ

ωn
√

1 − ζ2

equals π/2ωn at ζ = 0 and grows monotonically and without

bound as ζ increases to 1. The minimum rise time is π/2ωn.

•
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Prelab Assignments

Complete these assignments before the lab. Show all work for credit.

1. Express the signal x(t) = 3e−t sin 2t as an exponentially decaying

harmonic signal.

2. Find all local extrema of the exponentially decaying harmonic

signal x(t) = 3e−t/2 cos(3t − 1) and determine the elapsed time

between consecutive minima.

3. Determine the logarithmic decrement for the exponentially decay-

ing harmonic signal x(t) = e−3t cos(t + π/2) and relate this to the

ratio between successive minima.

4. Measurements on a mechanical system result in a signal that is

dominated by the solution to the differential equation

2
d2x
dt2 (t) + 24

dx
dt

(t) + 18x(t) = 2.

Determine whether the system is overdamped or underdamped.

5. For what value of k is the mass-spring-damper system, governed

by the differential equation

m
d2x
dt2 (t) + c

dx
dt

(t) + kx(t) = f (t),

critically damped?

6. Graph the unit step response of a linear, second-order, time-

invariant system with natural frequency ωn = 1/2 and damping

ratio ζ = 1/
√

2.
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Lab instructions2 2 These notes are an edited version of
handouts authored by Andrew Alleyne.

Consider the motion of the mechanical suspension shown below, able

to translate along the direction described by the vector î.

m kg

f (t)î

k N/m

x(t) m

î
c Ns/m

The displacement of the mass is governed by the differential equation

m
d2x
dt2 (t) + c

dx
dt

(t) + kx(t) = f (t). (20)

This corresponds to a linear, second-order, time-invariant, stable

system with natural frequency ωn =
√

k/m (in units of rad/s) and

damping ratio ζ = c/2
√

km. Estimates of the natural frequency and

damping ratio based on experimental measurements may be used

to estimate the ratios k/m and c/m and, if the mass is known, the

stiffness k and damping coefficient c.

In this lab, experiments will be conducted on an Educational Con-

trol Products (ECP) Model 210 Rectilinear Dynamic System. This

electromechanical apparatus is a three-degree of freedom spring-

mass-damper system. It consists of configurable masses on low-

friction bearings, springs, dampers and an input drive. Encoders

connected to each of the carts determine their locations. The input

drive command is generated by a digital to analog (DAC) signal pro-

duced by a data acquisition board installed in the benches’ PC. The

matlab toolbox Real-Time Windows Target will be used to both

drive the system when needed and collect response data.

Encoders attached to each cart are used to measure their displace-

ments. These encoders have a resolution of 16,000 counts per rev-
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olution. The small pulley that attaches the cart to the encoder has

a radius of 1.163 cm, so each cm of displacement is equivalent to

1/(2π ∗ 1.163) revolutions and, consequently, 16, 000/(2π ∗ 1.163)

encoder counts.

To make best use of lab time, look ahead at the Report Assignment

and create a table for recording experimental data. Make sure to note

your observations for each plot as they are generated.

Free response

In the first experiment, you will use the free response of a linear

mass-spring-damper model to explore the dependence of the natural

frequency and damping ratios on the values of the mass, stiffness,

and damping coefficient.

Follow the detailed instructions below to collect and analyze the

free response under each of three experimental conditions:

Condition 1: Small inertia, stiff spring, light damping. On the ECP

rectilinear plant at your bench, make sure the second carriage

initially has no weights on it. Open the damping adjustment knob

3/4 turn from the fully closed position.

Condition 2: Big inertia, stiff spring, light damping. Add four thick

(500 g) brass weights to experimental condition 1.

Condition 3: Big inertia, stiff spring, strong damping. Open the

damping adjustment knob 1/8 turn from the fully closed position.

What qualitative changes do you observe in the response when you

change the inertia and/or damping of the system?

Experimental procedure

1. Turn on the equipment:

(a) Start matlab using the icon found on your desktop.

(b) Turn on the ECP control box on the top shelf.

(c) Inside matlab, open the “read-only” file oneDOFinitial.mdl

located in the directory N:\labs\me340\Mass_Spring_oneDOF.
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(d) Save the file with the name lab4free<yourNetID>.mdl in the

directory C:\matlab\me340.

(e) Change matlab’s current directory to the location where

your model file was saved by typing cd c:\matlab\me340 at the

matlab command prompt.

(f) Click the simulink model file to give it focus. Confirm that

0 V is being sent to the DAC output and that data is collected

from optical encoder channel 1. Confirm that the gain block is

converting encoder counts to distance in cm and that data is

sampled by Real-Time Windows Target every 5 ms.

(g) Enter <ctrl+B> on your keyboard to build the model. While

your auto-generated code is building return to matlab’s com-

mand prompt. The build is complete when the message “Suc-

cessful completion of build procedure for model” is displayed.

2. Acquire data:

(a) Simply press the green Run button to start data collection.

Note, it can take a number of seconds to start the acquisition so

don’t click the run button multiple times if the data collection

does not start right away.

(b) With your fingers, move cart #2 approximately 1 cm to the

right, compressing the spring. Wait for Real-Time Windows

Target to refresh the plot window and then release.

(c) Before the plot window is again refreshed (after 5 seconds),

click the Stop button to stop data collection.

3. Analyze data:

(a) In matlab plot your displacement data:

>> data = oneDOFinitial_data;

>> plot(data(:,1), data(:,2));

(b) Zoom in on your plot to locate exact data points for estimating

ωn and ζ (for example, successive zeros or extrema), and record
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the corresponding values of t and x on a print out of the plot

for future reference.

Step response

In the second experiment, you will use the step response of a linear

mass-spring-damper model to estimate system parameters.

Experimental procedure

1. Turn on the equipment:

(a) Close the simulink model that you used in the previous

experiment.

(b) Open the “read-only” file oneDOFstep.mdl located in the direc-

tory N:\labs\me340\Mass_Spring_oneDOF.

(c) Save the file with the name lab4step<yourNetID>.mdl in the

directory C:\matlab\me340

(d) Change matlab’s current directory to the location where

you model file was saved by typing cd c:\matlab\me340 at the

matlab command prompt.

(e) Click the simulink model to give it focus. Confirm that the

“Pulse Generator” amplitude is set to 5. Confirm that the model

includes a feedback loop that adds damping to the system with

damping coefficient 5.2 in units of Ns/m.

(f) Enter <ctrl+B> on our keyboard to build the model. While

your auto-generated code is building, return to matlab’s com-

mand prompt. The build is complete when the message “Suc-

cessful completion of Real-Time Workshop ...” is displayed.

2. Acquire data:

(a) Click the Run button to start data collection.

(b) After several pulses click the Stop button to stop data collec-

tion.

3. Analyze data:
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(a) In matlab, plot your displacement data and the input:

>> data = oneDOFstep_data;

>> plot(data(:,1), data(:,2), ’r’, ...

data(:,1), data(:,3),’b’);

(b) Zoom in on your plot to locate data points for estimating ωn

and ζ (see Fig. 4) and record the corresponding values of t and

x on a print out of the plot for future reference. Include data

points for determining the maximum relative overshoot, the

settling time, the peak time, and the rise time.

Impulse response

In the third experiment, you will use the impulse response of a lin-

ear mass-spring-damper model to estimate system parameters. In

particular, use the value for the stiffness k found in the previous ex-

periment to estimate m and c.

Experimental procedure

1. Initialize experiment:

(a) Continue to use the simulink model from the previous exper-

iment.

(b) Change the input from a step input to an approximate impulse

by opening the “Pulse Generator” component and setting the

amplitude to 20, the period to 10, and the pulse width to 0.5%.

This produces a short pulse of 20 N for 50 ms.

2. Acquire data:

(a) Click the Run button to start data collection.

(b) After several impulses click the Stop button to stop data collec-

tion.

3. Analyze data:

(a) In matlab, plot your displacement data and the input:
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>> data = oneDOFstep_data;

>> plot(data(:,1), data(:,2), ’r’, ...

data(:,1), data(:,3),’b’);

(b) Zoom in on your plot to locate data points for estimating ωn

and ζ and record the corresponding values of t and x on a print

out of the plot for future reference.
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Report Assignments

Complete these assignments during the lab. Show all work for credit.

1. In the case of the free response, label each plot with the corre-

sponding case and order the plots accordingly.

2. Copy the table below into your report and enter the appropri-

ate data. Show your work used to estimate ωn and ζ on the plot

for the corresponding case, in the case that the system is under-

damped. If the system is overdamped, identify this on the plot and

in the table.

Experiment Data Reduction Table

Approx. System Theoretical Experimental

Parameters Values Values

c m k ζ ωn ζ ωn

Case # Ns/m kg N/m – rad/s – rad/s

1 8 0.55 780

2 8 2.55 780

3 75 2.55 780

3. In the case of the step response, label each plot accordingly.

4. Determine the maximum relative overshoot, the rise time, the set-

tling time, and the peak time. Use these measurements to estimate

ωn and ζ. Identify the equations used in your calculation on the

corresponding plot, and make sure to check the units.

5. Estimate the stiffness k from the steady-state displacement given

the pulse amplitude 5 N. Proceed to estimate m and c from the

step response. Show your work on the corresponding plot.

6. In the case of the impulse response, label the plot accordingly.

7. Use the value of k obtained from the steady-state response to a

step input, and estimate m and c from the impulse response. Show

your work on the corresponding plot.
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