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Laboratory handout 5 – Mode shapes and resonance

The differential equation

d2x
dt2 (t) + 2ζωn

dx
dt

(t) + ω2
nx(t) = f (t) (1)

describes a single-degree-of-freedom oscillator with damping ratio

ζ ≥ 0 and natural frequency ωn > 0.

Suppose that f (t) = 0 outside of the interval [0, ∆]. Integration on

both sides of (1) yields

dx
dt

(t)
∣∣∣∣∆
0
+ 2ζωnx(t)

∣∣∣∣∆
0
+ ω2

n

∫ ∆

0
x(τ)dτ =

∫ ∆

0
f (τ)dτ. (2)

Provided that x(t) and dx(t)/dt are both finite on the interval [0, ∆],

it follows that

lim
∆→0

x(t)
∣∣∣∣∆
0
= 0, lim

∆→0

∫ ∆

0
x(τ)dτ = 0 (3)

and

lim
∆→0

dx
dt

(t)
∣∣∣∣∆
0
= lim

∆→0

∫ ∆

0
f (τ)dτ. (4)

If the right-hand side is nonzero, then f (t) is an impulse. It fol-

lows that an impulse is equivalent to a change in the initial value

of dx(t)/dt. The function f (t) is a unit impulse if the limit of the

integral equals 1.

•

For general f (t), the solution to (1) is given by

x(t) =
(

2ζωnx(0) +
dx
dt

(0)
)

h(t) + x(0)
dh
dt

(t) +
(

f (#) ∗ h(#)
)
(t), (5)

where (
f (#) ∗ h(#)

)
(t) :=

∫ t

0
f (τ)h(t − τ)dτ (6)

and h(t) is the unit-impulse response. Specifically, h(t) is the solu-

tion to (1) when f (t) is a unit impulse and x(0) and dx/dt(0) both

equal 0 or, equivalently, the solution to (1) when f (t) = 0, x(0) = 0,
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and dx/dt(0) = 1.

When ζ = 0, the unit-impulse response equals

h(t) =
1

ωn
sin ωnt. (7)

In this case, and with x(0) = 0, the free response (with f (t) = 0)

equals

x(t) =
1

ωn

dx
dt

(0) sin ωnt, (8)

i.e., a harmonic signal with angular frequency ωn. Indeed, in this

case, the free response is harmonic with angular frequency ωn for

every choice of initial conditions.

•

When ζ > 0, the system is stable and h(t) is an exponentially

decaying signal. For t ≫ 1, the solution (5) is independent of the

initial conditions x(0) and dx
dt (0) and only dependent on f (t). In this

limit, the solution is called the steady-state response to the input f (t)

and is denoted by xss(t).

By substitution in (1), the complex exponential xss(t) = Aejωt

with (complex) amplitude A and angular frequency ω is the steady-

state response to the input f (t) = Bejωt with (complex) excitation

amplitude B and excitation frequency ω, provided that

(−ω2 + j2ζωnω + ω2
n)A = B. (9)

For small but nonzero ζ,

A ≈ B
ω2

n − ω2 (10)

when ω is far from ωn, and

A ≈ B
j2ζω2

n
(11)

when ω is close to ωn. As seen in the figure on the next page, the

dependence of |A| on ω peaks at the resonance frequency ωn. At

this excitation frequency, large-in-magnitude steady-state amplitude
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results even for small-in-magnitude excitation amplitude.

ω

|A|

ωn

Figure 5: The amplitude of the steady-
state response peaks at the resonance
frequency equal to the natural fre-
quency ωn.

•

For a linear, time-invariant mechanical system with two degrees of

freedom,

M ·

 ẍ1(t)

ẍ2(t)

+ C ·

 ẋ1(t)

ẋ2(t)

+ K ·

 x1(t)

x2(t)

 =

 f1(t)

f2(t)

 , (12)

where ẋi(t) = dxi(t)/dt, ẍi(t) = d2xi(t)/dt2, and

M =

 m11 m12

m21 m22

 , C =

 c11 c12

c21 c22

 , K =

 k11 k12

k21 k22

 (13)

denote the mass, damping, and stiffness matrix, respectively.

Suppose that f1(t) and f2(t) equal 0 outside of the interval [0, ∆].

Integration on the left-hand side of (12) yields

M ·

 ẋ1(t)

ẋ2(t)

 ∣∣∣∣∆
0
+ C ·

 x1(t)

x2(t)

 ∣∣∣∣∆
0
+ K ·

∫ ∆

0

 x1(τ)

x2(τ)

 dτ (14)

Provided that x1(t), x2(t), ẋ1(t), and ẋ2(t) are all finite on the interval

[0, ∆], it follows that

lim
∆→0

 x1(t)

x2(t)

 ∣∣∣∣∆
0
= 0, lim

∆→0

∫ ∆

0

 x1(τ)

x2(τ)

 dτ = 0 (15)
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and

M · lim
∆→0

 ẋ1(t)

ẋ2(t)

 ∣∣∣∣∆
0
= lim

∆→0

∫ ∆

0

 f1(t)

f2(t)

 dτ. (16)

If the right-hand side is nonzero, then f1(t) and/or f2(t) are im-

pulses. Each combination of impulses is equivalent to some change

in the initial values of ẋ1(t) and ẋ2(t).

•

Positive values of ω, for which

det
(

K − Mω2
)
= 0, (17)

are the natural (modal) frequencies of the system. For each natural

frequency, a column matrix  A1

A2

 (18)

such that (
K − Mω2

)
·

 A1

A2

 = 0 (19)

with nonzero A1 and/or A2 is a mode shape of the system.

In the absence of damping, and with x1(0) = x2(0) = 0, there are

natural frequencies ω1 and ω2 and corresponding mode shapes A1,1

A2,1

 and

 A2,1

A2,2

 (20)

such that the free response equals x1(t)

x2(t)

 =
1

ω1

 A1,1

A2,1

 sin ω1t +
1

ω2

 A1,2

A2,2

 sin ω2t, (21)

i.e., a sum of harmonic signals with angular frequencies ω1 and ω2.

Each such free response corresponds to the response (with zero initial

conditions) to some combination of impulses f1(t) and f2(t).

For arbitrary initial conditions, the free response is again given

by (21), but with sin ω1t and sin ω2t replaced by cos(ω1t − θ1) and
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cos(ω2t − θ2), respectively, for some phase shifts θ1 and θ2. If both

terms are nonzero, then this is periodic if and only if the ratio ω1/ω2

is a rational number.

•

For c11, c22 > 0, the mechanical system is stable and the free re-

sponse is exponentially decaying. For t ≫ 1, the solution is approxi-

mately independent of the initial conditions and only dependent on

f1(t) and f2(t). In this limit, the solution is called the steady-state

response and is denoted by x1,ss(t) and x2,ss(t), respectively, for the

two degrees of freedom.

By substitution in (12), the complex exponentials x1,ss(t) = A1ejωt

and x2,ss(t) = A2ejωt with (complex) amplitudes A1 and A2, and

angular frequency ω are the steady-state response to the inputs

f1(t) = B1ejωt and f2(t) = B2ejωt with (complex) excitation ampli-

tudes B1 and B2 and excitation frequency ω, provided that

(−Mω2 + jCω + K) ·

 A1

A2

 =

 B1

B2

 . (22)

In the case of small damping: max{c11, c12, c21, c22} = ϵ ≪ 1 and

nonzero c11 and/or c22, A1

A2

 ≈ (K − Mω2)−1 ·

 B1

B2

 (23)

for ω far from any natural frequency, since then K − Mω2 is an in-

vertible matrix. If, instead, ω is close to a natural frequency ωi with

mode shape  Ai,1

Ai,2

 , (24)

then (outside of exceptional circumstances), A1

A2

 ≈ k
ϵ

 Ai,1

Ai,2

 (25)

for some nonzero k.
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As illustrated in the figure on the next page, the dependence of

|A1| and |A2| on ω peaks at resonance frequencies equal to the nat-

ural frequencies. At these excitation frequencies, large-in-magnitude

steady-state amplitudes result even for small-in-magnitude excitation

amplitudes. At these frequencies, the relative magnitude and phase

of the harmonic signals in the two degrees of freedom is described by

the corresponding mode shape.

ω

|A1|

ω1 ω2

Figure 6: The amplitude of the steady-
state response peaks at the resonance
frequencies equal to each of the natural
frequencies ω1 and ω2.

Exercises

1. Determine the natural frequency of the system described by the

differential equation

2
d2x
dt2 (t) + 3

dx
dt

+ 4x(t) = 0.

2. Write the solution of the initial-value problem

2
d2x
dt2 (t) + 3

dx
dt

+ 4x(t) = 0, x(0) = 1,
dx
dt

(0) = −1

as an exponentially decaying harmonic signal of the form x(t) =

Ae−γt cos(ωt − θ).

3. Write the steady-state response of the differential equation

2
d2x
dt2 (t) + 3

dx
dt

+ 4x(t) = ejωt
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as a complex exponential signal Aejωt, and write A in polar form

as a function of ω.

4. Show that the natural frequencies and corresponding mode shapes

of a linear, time-invariant system with mass matrix M and stiffness

matrix K are the square roots of the eigenvalues and the corre-

sponding eigenvectors, respectively, of the matrix M−1 · K.

5. Find the natural frequencies and mode shapes of a linear, time-

invariant mechanical system with

M =

 1 0

0 2

 , K =

 2 −1

−1 1

 .

6. Find the solution of the initial-value problem

M ·

 ẍ1(t)

ẍ2(t)

+ K ·

 x1(t)

x2(t)

 =

 0

0

 ,

where

x1(0) = 1, x2(0) = 2,
dx1

dt
(0) =

dx2

dt
(0) = 0

and

M =

 1 2

2 2

 , K =

 4 8

8 2

 .

Is this periodic?

7. Suppose that an undamped, linear, time-invariant, two-degree-of-

freedom mechanical system has a mode shape 4

−3


with corresponding natural frequency ω. What is the ratio of the

steady-state amplitudes of the two degrees of freedom if the inputs

f1(t) and f2(t) are both harmonic with angular frequency ω and

there is small damping present? What is the difference in phase

shift between the two degrees of freedom?
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8. Consider a linear, time-invariant, two-degree-of-freedom mechani-

cal system that has two natural frequencies whose ratio is not a ra-

tional number. Suppose that a combination of impulses f1(t) and

f2(t) results in the response shown in the graph below. Use this to

determine one of the natural frequencies and the corresponding

mode shape.

t
π 2π 3π

1

−1

2

−2

3

−3

x1(t) = cos
√

13t

x2(t) = −3 cos
√

13t

9. Consider the two-degree-of-freedom mechanical suspension,

shown below, where x1 and x2 denote displacements of the lower

and upper plate, respectively, relative to the undeformed configu-

ration of the two springs.

m1

m2

k1

k2

x1

x2

î

Compute the natural frequencies, and comment on the determina-

tion of the corresponding mode shapes.

•
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Solutions

1. Here, ω2
n = 4/2 ⇒ ωn =

√
2.

2. Here, x(t) = Ae−γt cos(ωt − θ) implies that

dx
dt

(t) = −Ae−γt(γ cos(ωt − θ) + ω sin(ωt − θ)
)

and

d2x
dt2 (t) = Ae−γt((γ2 − ω2) cos(ωt − θ) + 2ωγ sin(ωt − θ)

)
Substitution into the differential equation and identifying coeffi-

cients in front of cos(ωt − θ) and sin(ωt − θ) shows that

2(γ2 − ω2)− 3γ + 4 = 0, 4ωγ − 3ω = 0

which imply that γ = 3/4 and ω =
√

23/4.

Since x(0) = A cos θ and dx/dt(0) = −A(γ cos θ − ω sin θ), it

follows that

A cos θ = 1, A sin θ = − 1√
23

⇒ A =

√
24
23

, θ = − arccos

√
23
24

.

3. Here, xss(t) = Aejωt, provided that

(−2ω2 + j3ω + 4)Aejωt = ejωt,

which implies that

A =
1

4 − 2ω2 + j3ω
=

1√
(4 − 2ω2)2 + 9ω2

ejθ ,

where

cos θ =
4 − 2ω2√

(4 − 2ω2)2 + 9ω2
, sin θ = − 3ω√

(4 − 2ω2)2 + 9ω2
.

4. Multiplication on both sides of,

(
K − Mω2

)
·

 A1

A2

 = 0
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by M−1 implies that

(
M−1 · K − ω2 I

)
·

 A1

A2

 = 0,

i.e., that ω2 is an eigenvalue of M−1 · K with corresponding eigen-

vector  A1

A2

 .

5. Here, the natural frequencies ω satisfy the equation

0 = det(K − Mω2) = 2ω4 − 5ω2 + 1

which implies that ω1,2 =
√

5 ±
√

17/2. The corresponding mode

shapes satisfy the equation

0 = (K − Mω2) ·

 A1

A2

 =

 3∓
√

17
4 A1 − A2

−A1 − 3±
√

17
2 A2


which imply that A2 = (3 ∓

√
17)A1/4.

6. The eigenvalues of the matrix

M−1 · K =

 4 −6

0 7


are ω2

1 = 7 and ω2
2 = 4. The corresponding eigenvectors are −2A

A

 and

 B

0

 .

The function

x(t) =

 −2A

A

 cos(
√

7t − θ1) +

 B

0

 cos(2t − θ2)

satisfies the initial conditions provided that θ1 = θ2 = 0, A = 2,

and B = 5. The solution is not periodic, since
√

7/2 is an irrational

number.
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7. If f1(t) = B1ejωt and f2(t) = B2ejωt, then x1(t) = A1ejωt and

x2(t) = A2ejωt, where A1

A2

 ≈ k
ϵ

 4

−3


for some constant k and ϵ ≪ 1. It follows that |A1|/|A2| = 4/3,

and that x1(t) and x2(t) differ in phase by π, since −1 = ejπ .

8. Since x1(t) and x2(t) are harmonic, the response must be a free

response described by one of the natural frequencies and its mode

shape. Here, ω =
√

13 and a mode shape is the column matrix 1

−3


The signals x1(t) and x2(t) differ in phase by π. It follows that

when x1(t) has a local maximum, then x2(t) has a local minimum,

and vice versa.

9. By Newton’s 2nd law, the displacements x1(t) and x2(t) satisfy the

differential equations

M ·

 ẍ1(t)

ẍ2(t)

+ K ·

 x1(t)

x2(t)

 =

 0

0

 ,

where ẋi(t) = dxi(t)/dt, ẍi(t) = d2xi(t)/dt2, and

M =

 m1 0

0 m2

 , K =

 k1 + k2 −k2

−k2 k2


It follows that the natural frequencies ω are the square roots of the

eigenvalues of the matrix

M−1 · K =

 k1+k2
m1

− k2
m1

− k2
m2

k2
m2


Specifically,

ω2 =
m1k2 + m2k1 + m2k2 ±

√
(m1k2 + m2k1 + m2k2)2 − 4m1m2k1k2

2m1m2
.
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The mode shapes are given by the corresponding eigenvectors.

•
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Prelab Assignments

Complete these assignments before the lab. Show all work for credit.

1. Find the natural frequencies and mode shapes of a linear, time-

invariant mechanical system with

M =

 3 0

0 3/4

 , K =

 4 −3

−3 5

 .

2. Suppose that an undamped, linear, time-invariant, two-degree-of-

freedom mechanical system has a mode shape 4

−3


with corresponding natural frequency 2. Sketch the steady-state

response for the two degrees of freedom if the inputs f1(t) and

f2(t) are both harmonic with frequency 1.98 and there is small

damping present.

3. Consider a linear, time-invariant, two-degree-of-freedom mechani-

cal system that has two natural frequencies whose ratio is not a ra-

tional number. Suppose that a combination of impulses f1(t) and

f2(t) results in the response shown in the graph below. Use this to

determine one of the natural frequencies and the corresponding

mode shape.

t
π 2π 3π

1

−1

2

−2

3

−3

x1(t) = 3 cos
√

3t

x2(t) = cos
√

3t

4. Consider the two-degree-of-freedom mechanical suspension,
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shown below, where x1 and x2 denote displacements of the lower

and upper plate, respectively, relative to the undeformed configu-

ration of the two springs.

2.5 kg

2.5 kg

400 N/m

400 N/m

x1

x2

î

Compute the natural frequencies and the corresponding mode

shapes.
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Lab instructions3 3 These notes are an edited version of
handouts authored by Andrew Alleyne.

In this lab, experiments will again be conducted on an Educational

Control Products (ECP) Model 210 Rectilinear Dynamic System. This

electromechanical apparatus is a three-degree of freedom spring-

mass-damper system. It consists of configurable masses on low-

friction bearings, springs, dampers and an input drive. Encoders

connected to each of the carts determine their locations. The input

drive command is generated by a digital to analog (DAC) signal

produced by a data acquisition board installed in the benches’ PC.

The matlab toolbox Real-Time Windows Target will be used to

both drive the system when needed and collect response data.

Encoders attached to each cart are used to measure their displace-

ments. These encoders have a resolution of 16,000 counts per rev-

olution. The small pulley that attaches the cart to the encoder has

a radius of 1.163 cm, so each cm of displacement is equivalent to

1/(2π ∗ 1.163) revolutions and, consequently, 16, 000/(2π ∗ 1.163)

encoder counts.

To make best use of lab time, make sure to note your observations

for each plot as they are generated.

Impulse response

In the first experiment, you will use the impulse response of a two-

degree-of-freedom system to determine the corresponding natural

frequencies. Secure three large and one small brass weight on the

carriage closest to the actuating motor and four large weights on the

second carriage. Use two medium springs in the relevant places.

Experimental procedure

1. Turn on the equipment:

(a) Start matlab using the icon found on your desktop.

(b) Turn on the ECP control box on the top shelf.
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(c) Inside matlab, open the “read-only” file twoDOFImpulse.mdl

located in the directory N:\labs\me340\Mass_Spring_twoDOF.

(d) Save the file with the name lab5free<yourNetID>.mdl in the

directory C:\matlab\me340.

(e) Change matlab’s current directory to the location where

your model file was saved by typing cd c:\matlab\me340 at the

matlab command prompt.

(f) Click the simulink model file to give it focus. Confirm that

the gain block is converting encoder counts to distance in cm

and that data is sampled by Real-Time Windows Target every 5

ms. Confirm that the Pulse generator is producing a 6 sample

period pulse (6 ∗ 0.005 = 0.030 s pulse) with an amplitude of 5

DAC V.

(g) Enter <ctrl+B> on your keyboard to build the model. While

your auto-generated code is building, watch the status at the

bottom left of your simulink model to determine when the

build is complete.

2. Acquire data:

(a) Simply press the green Run button to start data collection.

Note, it can take a number of seconds to start the acquisition so

don’t click the run button multiple times if the data collection

does not start right away.

(b) Click on the “Cart1_Pos” plot to give it focus and see if you

can visually identify two different frequencies in the system

response. The higher frequency is easier to spot then the lower

one.

3. Analyze data:

(a) In matlab, perform spectral analysis using the fast fourier

transform fft command to decompose the noisy signal into its

harmonic components.

>> pos1 = twoDOFImpulseCart1_data(:,2);
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>> pos1fft = fft(pos1, 1024);

>> Pd = pos1fft.*conj(pos1fft)/1024;

>> T=.005;

>> freq=(1/T)/1024*(0:511);

>> plot(freq, Pd(1:512))

(b) Zoom into the plot to determine the frequencies correspond-

ing to peaks in the power spectral density and record these.

Consider the effect of the resolution on the horizontal axis and

identify an associated bound on the frequency error.

(c) Use the axis command to set the range of frequencies and

power spectral density values. Use the title and xlabel com-

mands to add the title “Power Spectral Density Plot” and the

axis label “Frequency (Hz)” to the horizontal axis.

Harmonic Input Forced Response

As an alternative to using the impulse response, in this experiment

you will use the response to a sine wave input with slowly increasing

frequency, but constant amplitude, to observe changes to the ampli-

tude and phase associated with resonance at the system’s natural

frequencies.

Experimental procedure

1. Turn on the equipment:

(a) Close the simulink model that you used in the previous

experiment.

(b) Open the “read-only” file twoDOFsweptsine.mdl located in the

directory N:\labs\me340\Mass_Spring_twoDOF.

(c) Save the file with the name lab5sweep<yourNetID>.mdl in the

directory C:\matlab\me340

(d) Change matlab’s current directory to the location where

you model file was saved by typing cd c:\matlab\me340 at the

matlab command prompt.
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(e) Click the simulink model to give it focus. In this model, we

use a Function component to vary the input to cart one’s motor.

The desired input is a range of frequencies that start at 0.625

Hz and increase over a time period of 150 seconds to 5 Hz.

Confirm that the output of the Function component is the signal

0.4 sin
(

2π
(
0.625t + 5.0−0.625

150
t2

2
))

DAC V.

(f) Enter <ctrl+B> on your keyboard to build the model.

2. Acquire data:

(a) Simply press the green Run button to start data collection.

Note, it can take a number of seconds to start the acquisition so

don’t click the run button multiple times if the data collection

does not start right away. You will note that in the “Cart1” plot

window three things are being plotted: cart response, input

waveform, and a straight line that corresponds to the current

frequency of the sine sweep waveform. As the sine sweep pro-

gresses you should notice two resonance frequencies.

(b) When you have observed both resonance frequencies, click the

Stop button to stop data collection.

3. Analyze data:

(a) In matlab, create a plot of the response versus the excitation

frequency

>> data = twoDOFsweptsineCart1_data;

>> plot(data(:,2), data(:,4))

>> xlabel(’Frequency (Hz)’); ylable(’Amplitude (cm)’);

(b) Zoom in on your plot and record the resonance frequencies.

Compare these with the modal frequencies obtained in Experi-

ment I.

Mode shapes

Recall that mode shapes are described by the relative amplitudes and

the phase difference between the displacements of the two degrees
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of freedom when they oscillate at the natural frequencies. In the

case of small damping, we can typically determine the mode shape

experimentally by exciting the system with a harmonic input near a

natural frequency. This is the approach used in this experiment.

Experimental procedure

1. Initialize experiment:

(a) Close the Simulink file that you used in the previous experi-

ment.

(b) Open the “read-only” file twoDOFmodeshape.mdl located in the

directory N:\labs\me340\Mass_Spring_twoDOF.

(c) Save the file with the name lab5mode<yourNetID>.mdl in the

directory C:\matlab\me340.

(d) Change matlab’s current directory to the location where you

model file was saved by typing cd c:\matlab\me340 at the

matlab command prompt.

(e) Click the simulink model to give it focus. Enter <ctrl+B> on

your keyboard to build the model.

For each of the two natural frequencies found in the previous

experiments:

2. Aquire data:

(a) Enter the natural frequency into the Sine wave component, and

click the Run button to start data collection. Let the system run

for 10 seconds or so to allow time for it to reach steady state.

Note that the yellow trace is cart one and the purple trace is cart

two.

(b) After steady state has been reached and enough data has been

collected, click the Stop button to stop data collection.

3. Analyze data:

(a) In matlab, plot the displacements of the two masses:
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>> data = twoDOFmodeshapeCarts_data;

>> plot(data(:,1), data(:,2),’r-’, ...

data(:,1), data(:,3) ,’b-.’)

(b) Zoom in on your plot and measure the amplitude ratio and

phase difference between the signals.
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Report Assignments

Complete these assignments during the lab. Show all work for credit.

1. Write down the natural frequencies found from the power spectral

density plot of the free response in the first experiment. Don’t

forget units.

2. Write down the resonance frequencies found from the analysis of

the harmonically forced response in the second experiment. Don’t

forget units.

3. Compare the frequencies obtained in the previous two cases to the

values found in the last prelab assignment.

4. For each of the resonance frequencies, identify the forced response

in the third experiment in terms of the observed ratio of ampli-

tudes and phase difference between the two degrees of freedom.

5. Compare the observed ratios of amplitudes and phase differences

to the mode shapes found in the last prelab assignment.
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