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Laboratory handout 6 – Continuous systems

The lateral displacement y(x, t) of a homogeneous, slender beam

of density ρ per unit length that results from the imposition of a

transversal load f (x, t) per unit length and suitable boundary con-

ditions at the ends x = 0 and x = ℓ is governed by the partial

differential equation

ρ
∂2y
∂t2 (x, t) + c

∂5y
∂x4∂t

(x, t) + EI
∂4y
∂x4 (x, t) = f (x, t), (1)

where E is the Young’s modulus of the beam, I is the area moment

of inertia of a cross section, and c is a damping coefficient.

For a beam clamped at both ends, the boundary conditions imply

that

y(0, t) = 0,
∂y
∂x

(0, t) = 0, y(ℓ, t) = 0,
∂y
∂x

(ℓ, t) = 0. (2)

Similarly, for a cantilevered beam with one clamped end and one free

end, the boundary conditions imply that

y(0, t) = 0,
∂y
∂x

(0, t) = 0,
∂2y
∂x2 (ℓ, t) = 0,

∂3y
∂x3 (ℓ, t) = 0. (3)

•

When c = 0, the free response (with f (x, t) = 0 for x ∈ [0, l] and

t ≥ 0) is of the form γ(x)ejωt for some function γ(x) and angular

frequency ω provided that

γ′′′′(x) =
ρω2

EI
γ(x), (4)

where γ(x) must satisfy the boundary conditions at x = 0 and x = l.

If a nonzero function γ(x) satisfies (4) and the boundary conditions

for some ω, then ω is a natural frequency of the beam and γ(x) is

the corresponding mode shape. The expression γ(x)ejωt is a modal

oscillation.

For a beam clamped at both ends, every mode shape must satisfy
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the boundary conditions

γ(0) = γ(ℓ) = γ′(0) = γ′(ℓ) = 0. (5)

Similarly, for a cantilevered beam with one clamped end and one free

end, every mode shape must satisfy the boundary conditions

γ(0) = γ′(0) = γ′′(ℓ) = γ′′′(ℓ) = 0. (6)

For either choice of boundary conditions, there exists an infinite,

increasing sequence of distinct natural frequencies {ωn}∞
n=1 and

associated mode shapes γn(x), such that

∫ ℓ

0
γ2

n(x)dx = 1. (7)

•

•

For either choice of boundary conditions, every solution to (1) can

be written as a modal decomposition

y(x, t) =
∞

∑
n=1

an(t)γn(x) (8)

for some unknown functions an(t). Substitution into (1) then yields

∞

∑
n=1

(
ρän(t)γn(x) + cȧn(t)γiv

n (x) + EIan(t)γiv
n (x)

)
= f (x, t) (9)

Using (4), (7), and the orthogonality of mode shapes, multiplication

by γm(x), integration, and division by ρ yields

äm(t) +
cω2

m
EI

ȧm(t) + ω2
mam(t) =

1
ρ

∫ ℓ

0
f (x, t)γm(x)dx. (10)

For each m, this corresponds to a single-degree-of-freedom oscillator

with damping ratio ζ = cωm/2EI and natural frequency ωm.

For small but nonzero ζ and

1
ρ

∫ ℓ

0
f (x, t)γm(x)dx = Bmejωt (11)
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with excitation amplitudes Bm and excitation frequency ω, it follows

that

yss(x, t) ≈ Bn

j2ζωn
ejωtγn(x) (12)

for ω ≈ ωn. In other words, at the resonance frequencies ωn,

large-in-magnitude steady-state amplitude results even for small-

in-magnitude excitation amplitude. At these frequencies, the spatial

shape of the response is identical to a mode shape.

Exercises

1. Show that there is an infinite, increasing sequence of natural fre-

quencies for the beam with both ends clamped, and find expres-

sions for the corresponding mode shapes.

2. For the beam with both ends clamped, show that

ρω2
nℓ

4

EI
≈ π4

(
n +

1
2

)4
.

•

Solutions

1. If (4) has a solution γ(x) that satisfies the boundary conditions

and does not equal 0 for all x then ω is the corresponding natural

frequency of the beam. The general solution to (4) is of the form1 1 Remember that

cos x =
1
2
(ejx + e−jx),

sin x =
1
j2
(ejx − e−jx),

cosh x =
1
2
(ex + e−x),

and
sinh x =

1
2
(ex − e−x).

γ(x) = C1 cos λ
x
ℓ
+ C2 sin λ

x
ℓ
+ C3 cosh λ

x
ℓ
+ C4 sinh λ

x
ℓ

,

where λ =
(
ρω2/EI

) 1
4 ℓ and C1, C2, C3, and C4 are arbitrary. The

first three boundary conditions in (5) are satisfied provided that

C3 = −C1, C4 = −C2 and

C2 =
cosh λ− cos λ

sin λ− sinh λ
C1.
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This implies that if ω is a natural frequency, then the correspond-

ing mode shape is a nonzero multiple of

cos λ
x
ℓ
− cosh λ

x
ℓ
+

cosh λ− cos λ

sin λ− sinh λ

(
sin λ

x
ℓ
− sinh λ

x
ℓ

)
.

The final boundary condition requires that

2λ(cos λ cosh λ− 1)
ℓ(sin λ− sinh λ)

= 0

or, in other words,

cos λ =
1

cosh λ
.

The left-hand side oscillates between −1 and 1 as λ increases,

while the right-hand side is positive and decreases monotonically

from 1 at λ = 0 to 0 as λ → ∞. It follows that there is an infinite,

increasing sequence λ1, . . . , λn, . . . of positive real values for which

the two sides are equal and, consequently, an infinite, increasing

sequence of natural frequencies {ωn}∞
n=1, with corresponding

mode shapes γn(x) that are multiples of the function

cos λnz− cosh λnz +
cosh λn − cos λn

sin λn − sinh λn

(
sin λnz− sinh λnz

)
.

where z = x/ℓ.

2. As seen in the previous solution, the parameter combination

ρω2
nℓ

4/EI corresponds to the fourth power of the nth root of the

equation

cos λ =
1

cosh λ
.

A graph of the two sides shows that the roots occur close to the

zeros of cos λ, i.e., π/2 + nπ. In particular, for the lowest natural

frequency with n = 1,

ω1 ≈ 22

√
EI
ρℓ4 .

•
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Prelab Assignments

Complete these assignments before the lab. Show all work for credit.

1. The mode shapes γn(x) of a cantilever beam are multiples of the

function

sinh λnz− sin λnz− sinh λn + sin λn

cosh λn + cos λn

(
cosh λnz− cos λnz

)
where z = x/l and λn are roots of the equation

cos λ = − 1
cosh λ

.

Plot the first three mode shapes of the cantilever beam. (Hint:

Compute the first three roots of λ and substitute in the mode

shape relation).

2. For a given mode shape, a node along the beam is a location

where the displacement y(x, t) = γ(x)ejωt = 0 for all t. Deter-

mine the number of nodes for the first two natural frequencies of

the cantilevered beam. How many nodes do you expect for the nth

mode shape?
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Lab instructions2 2 These notes are an edited version of
handouts authored by Andrew Alleyne.

In previous experiments with the ECP rectilinear plant, we studied

systems where the flexibility and mass could be separated. This is

called a lumped system since flexibility and inertia were “lumped”

into the individual elements (spring and mass). Lumping is a method

of approximating the real system to obtain a simplified model. We

were able to lump the ECP system into mass and spring because the

flexibility of the cart was insignificant when compared to the spring,

and the spring’s mass was insignificant when compared to that of the

cart. To simplify the model, we assumed that the cart was rigid and

that the spring had no mass.

What can be done when the mass does have significant flexibility

and the spring does have a significant mass? In such a case, the mass

and the spring are called continuous systems. In continuous systems,

it is very difficult or impossible to “lump” the system parameters.

In other words, mass and flexibility are distributed throughout the

system, not at discrete points.

Engineering applications are rarely as simple as a mass-spring

system. In many cases there will be components that have significant

amounts of inertia and flexibility. This is true of almost any structure,

from a high-rise building to the wing of an aircraft. In the high-rise

building, the steel frame acts as a spring and a mass. Other parts of

the building, e.g., concrete floors and walls, act as masses that are

distributed throughout the structure. It may not be easy to separate

the components into a mass, spring, and damper!

In this lab, we will perform experiments on a cantilevered beam

with one end clamped and one end free. Such a beam has an infi-

nite, increasing sequence of natural frequencies {ωn}∞
n=1 with corre-

sponding mode shapes γn(x), such that γn(x)ejωnt is an example free

response.

Moreover, in the presence of light damping, a resonant, large-

amplitude response results from harmonic excitation with excitation

frequency near a natural frequency. Usually, a system will experience
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excitation only in a certain range of frequencies, and we need only

study/model those modes whose frequencies lie in this range.

Experiment I: Frequency response

We will perform a frequency response experiment on an actual beam

to determine precise values of the first three modal frequencies and

sketch the corresponding mode shapes.

A small linear motor is used to exert force on the beam. A 600-

watt audio amplifier powers the exciter. The output voltage of the

amplifier, and thus the force of the exciter, will be determined by a si-

nusoidal signal from an HP 33120A Function Generator. To measure

the motion of the beam, we will use a small accelerometer attached to

the free end of the beam. The signal from the accelerometer will be

passed through a signal-conditioning amplifier and then to an oscil-

loscope. We will use the measurement capabilities of the oscilloscope

to record acceleration amplitudes for our frequency response exper-

iment. Finally, we will use a strobe light to observe the mode shapes

of the beam.

Important Notes on the Oscilloscope:

• If the oscilloscope trace becomes too large to fit on the screen, turn

the CH2 VOLTS/DIV knob until the whole trace is visible.

• The oscilloscope will not automatically measure peak-to-peak

voltage if the signal amplitude goes off-screen.

• At higher frequencies, you will need to turn the SEC/DIV knob

to look at smaller segments of data. You can also try pushing the

MAIN/DELAYED button and picking MAIN or ROLL from the

screen menu.

• The oscilloscope’s automatic peak-to-peak measurement is based

on counting pixels. If your signal is too small on screen, the reso-

lution of your measurement will be poor! Try to keep the signal on

the majority of the screen.
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Before beginning the experiment, make sure all nuts and bolts on

the experimental apparatus are tight. Make sure to do the following steps

in order so as to avoid damaging the equipment!

Experimental procedure

1. Turn on the equipment:

(a) Turn on the oscilloscope.

(b) Turn on the accelerometer amplifier (small box with meter).

Set the gain to 10.

(c) Turn on the function generator.

i. Place the function generator in “High Z” mode by pressing

the following button sequence: SHIFT, MENU,→→→, ↓↓,

→. You should now see High Z on the display. Press ENTER.

ii. Set the output amplitude. Press the AMPL button followed

by the ENTER NUMBER button. Use the number keys to

input 0.100 and then press the VPP button. You have now

set the amplitude of excitation to 100 mV peak-to-peak (mV

p-p). Verify that this correct number shows on the display. Using a

higher level will damage the system.

iii. Set the output frequency. Press the FREQ button then the

ENTER NUMBER button. Use the number keys to input

1.00. Press the HZ button. You have now set the frequency of

excitation to 1.00 Hz.

(d) On the oscilloscope, you should see two traces. Channel 1

should be the smooth sine wave from the function generator.

Channel 2 should be the signal from the accelerometer, which

is a fuzzy flat line for now. Tap the beam to verify that the ac-

celerometer is working – the Channel 2 signal should spike as a

result.

(e) Turn on the Hafler power amplifier. The beam should start to

vibrate slightly at 1 Hz.
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2. Aquire data:

(a) For each of the frequencies in the data table in the Report

Assignments section, record the peak-to-peak input amplitude

Vin and accelerometer voltage Vacc.

(b) Specifically, measure the peak-to-peak amplitude of the ac-

celerometer voltage by doing the following on the oscilloscope:

i. Push the VOLTAGE button in the measure area.

ii. Push the screen menu button labeled SOURCE to select

Channel 2.

iii. Push the screen menu button vP−P. The peak-to-peak ac-

celerometer voltage will appear on the bottom of the oscillo-

scope screen as Vp-p(2).

(c) Increase the frequency to the next value on the table by push-

ing the FREQ button on the function generator. Use the←

and→ keys to pick the digit you wish to change, then turning

the large knob to increase or decrease the digit. Allow the ac-

celerometer signal to settle down to a steady sine wave after

each change of frequency before recording the accelerometer

peak-to-peak voltage from the oscilloscope.

(d) Looking at your data table, you should notice three frequen-

cies at which there are local resonance peaks in the accelerom-

eter response. Reset the excitation frequency to each of these

values and scan slowly until you precisely (within 0.1 Hz) locate

the frequencies at which these maxima occur. Note these fre-

quencies in the space provided underneath the data table. Also

record the peak-to-peak acceleration voltage Vacc for these.

(e) As was stated before, this beam has an infinite number of

natural frequencies. To verify this, slowly turn the excitation

frequency beyond the maximum on the data table. As you turn

the frequency higher and higher, you will observe (and hear!)

many more peaks in the vibration, each corresponding to one of

the higher natural frequencies of the beam.
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(f) Turn off the equipment in the following order to avoid equip-

ment damage!

i. Hafler power amplifier

ii. Function generator

iii. Accelerometer amplifier (make sure to do this)

iv. Oscilloscope

3. Analyze data:

(a) Create a Bode diagram of the magnitude of the frequency re-

sponse function in dB. Specifically, for each excitation frequency,

let the corresponding y-coordinate equal 20 log10
(
Vacc/Vin

)
.

Use the matlab semilogx command to represent the excitation

frequency using a logarithmic scale along the horizontal axis.

(b) Once everyone has completed the above portions of the ex-

periment, your TA will use a strobe light to illuminate one of

the beams. The TA will set the excitation frequency to each of

the natural frequencies found above, and use the strobe light to

“freeze” the motion of the beam. Sketch the shape of the frozen

beam at each natural frequency. This shape is the mode shape

for that natural frequency.

Experiment II: Finite-element modeling

In practice, the material and geometric properties of beam structures

are not uniform, but vary along the structure. For such structures, it

is difficult, if not impossible, to obtain exact solutions for the natural

frequencies and mode shapes. As an alternative, since the 1950s,

engineers have been using a numerical method called Finite Element

Analysis (FEA). This method is computationally intensive but has

become very widely used as computing costs have fallen. FEA is

used to solve many engineering problems including stress analysis,

vibration analysis, heat transfer, and electromagnetic field analysis.

The details of FEA are beyond the scope of this class, but the

method basically consists of breaking our beam into small pieces



laboratory handouts, me 340 49

(called elements) that are joined together at points called nodes. Each

element has uniform stiffness and mass along its length and can thus

be simply modeled. The interaction of each element with its neigh-

bors is taken into account, and global mass and stiffness matrices can

be produced for the system. As with the two-DOF mass-spring sys-

tem in Lab 5, the mass and stiffness matrices can be used to solve for

the natural frequencies and mode shapes. If the beam is broken into

sufficiently small elements, the finite element solution approximates

the experimental result closely.

Experimental procedure

1. Start matlab on your PC.

2. Type cd n:\labs\me340\beam and then type beam to run the m-file

beam.m. This particular program will break the beam into only 3

elements. matlab will use FEA to find the first three natural fre-

quencies and approximations of mode shapes for the experimental

beam. Print out the three plots that appear.
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Report Assignments

Complete these assignments during the lab. Show all work for credit.

1. Enter the data from Experiment I in the following table.

Freq (Hz) Vacc p-p Vin p-p

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Freq (Hz) Vacc p-p Vin p-p

15

16

17

18

19

20

25

30

35

40

45

50

55

60

2. Record the first three natural frequencies within 0.1 Hz, as well as

the corresponding peak-to-peak accelerator voltage.

ω1 = Vacc =

ω2 = Vacc =

ω3 = Vacc =

3. Attach the Bode diagram of the magnitude of the beam’s fre-

quency response function.

4. Attach a sketch of the first three mode shapes of the beam.

5. Attach the three plots generated by running the FEA in matlab.

6. Compare the FEA mode shapes to the sketched experimental

mode shapes. Do the shapes roughly match? What could be done
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to make the FEA mode shapes more like what you saw in the

experiment?
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