ME 360: FUNDAMENTALS OF SIGNAL PROCESSING, INSTRUMENTATION, AND CONTROL

Experiment No. 3 Noise Reduction Techniques, Instrumentation Amplifiers, and Strain Gage Measurements Data Sheet

5.1 EFFECT OF SHIELDING ON ELECTROMAGNETICALLY COUPLED NOISE

	Peak-to-peak Noise Level	
Shield	Normal	Close to AC Power Cord
Ungrounded		
Grounded		

Observations:

5.2 EFFECT OF CONDUCTOR TWISTING ON INDUCTIVELY COUPLED NOISE

Loop	Peak-to-peak Noise Level
Untwisted	
Twisted	

Observations:

5.3 INSTRUMENTATION AMPLIFIER GAIN, COMMON MODE GAIN, AND OFFSET

Amplifier Offset Voltage Measurement $(V_+ = V = 0)$				
Offset Voltage [V] = V _{offset} = V _{out}				
Amplifier Com	mon Mode Gain and CMRR ($V_+ = V = 5 \text{ V}$)			
Input Voltage V _{in} [V]				
Output Voltage (5-V supply off) Voff [V]				
Output Voltage (5-V supply on) Von [V]				
Common Mode Gain [–] = $G_{CM} = (V_{on} - V_{on})$	v _{off}) / V _{in}			
CMRR [dB] = $20 \log_{10} (G / G_{CM})$				
Gain Resistor $R_G[\Omega]$	$G_{calc} = 1 + 49.4 \text{ k}\Omega / R_G$			
Amplifier Normal Mode Ga	in (sinusoid with 0.1 V _{p-p} amplitude and 0 V	DC offset)		
Input RMS V _{rms.in} [V]	Output RMS V _{rms.out} [V]			

Typical and Maximum Values from AD620AN Specification Sheet			
Typical Gain Error (G = 1) [%]	Maximum Gain Error (G = 1) [%]		
Typical Output Offset (±15 V) [μV]	Maximum Output Offset (±15 V) [μν]		
Typical CMRR (G = 1) [dB]	Minimum CMRR (G = 1) [dB]		

RMS Normal Mode Gain [–] = G_{rms} = $(V_{rms,out} - V_{offset}) / (V_{rms,in})$

Calculated Gain Error = 100 % (G_{calc} – G_{rms}) / G_{rms}

Observations:

5.4 NATURAL FREQUENCY AND DAMPING RATIO OF VIBRATING BEAM

Geometric Properties of Beam and Calculation of Natural Frequency				
Length L [m]		Diameter D [m]	0.0127	
Density ρ [kg/m ³]	2700	Modulus E [Pa]	6.9 × 10 ¹⁰	
Calculated Natural Frequency [rad/s] = $\omega_{\text{n,calc}} = 0.14 \frac{D}{L^2} \sqrt{\frac{E}{\rho}} 2\pi$				

Measured Natural Frequency and Damping Ratio		
First Chosen Peak Voltage V ₁ [mV]	Second Chosen Peak Voltage V ₂ [mV]	
First Chosen Peak Time t ₁ [ms]	Second Chosen Peak Time t ₂ [ms]	
Cursor ∆t [ms]	Cursor frequency f _{cursor} [Hz]	
N = Number of Periods between chosen Peak	is .	
Measured Damped Natural Frequency [rad/s]	ω_d	
Damping Ratio ζ		
Measured Natural Frequency [rad/s] ω_n		
Calculated-Measured Difference [%]= 100 %	$ imes rac{\omega_{n,calc} - \omega_{n,meas}}{\omega_{n,meas}}$	

Observations: