ME 360: FUNDAMENTALS OF SIGNAL PROCESSING, INSTRUMENTATION, AND CONTROL

Experiment No. 3 Noise Reduction Techniques, Instrumentation Amplifiers, and Strain Gage Measurements Data Sheet

5.1 EFFECT OF SHIELDING ON ELECTROMAGNETICALLY COUPLED NOISE (5 PTS)

	Peak-to-peak Noise Level		
Shield	Normal	Close to AC Power Cord	
Ungrounded			
Grounded			

Observations:

5.2 EFFECT OF CONDUCTOR TWISTING ON INDUCTIVELY COUPLED NOISE (5 PTS)

Loop	Peak-to-peak Noise Level
Untwisted	
Twisted	

Observations:

5.3 INSTRUMENTATION AMPLIFIER GAIN, COMMON MODE GAIN, AND OFFSET (20 PTS)

Amplifier Offset Voltage Measurement ($V_+ = V = 0 V$)					
Offset Voltage [V] = V _{offset} = V _{out}					
Amplifier Common Mode Gain and CMRR ($V_+ = V = 0 V$, 5 V)					
Input Voltage V _{in} [V]					
Output Voltage (5-V supply off) V _{off} [V]					
Output Voltage (5-V supply on) Von [V]					
Common Mode Gain [–] = G_{CM} = ($V_{on} - V_{off}$) / V_{in}					
$CMRR [dB] = 20 \log_{10} (G / G_{CM})$					
Gain Resistor $R_G [\Omega]$		G_{calc} = 1 + 49.4 k Ω / R_{G}			
Amplifier Normal Mod	Amplifier Normal Mode Gain (sinusoid with 0.1 V _{n-n} amplitude and 0 VDC offset)				
Input RMS V _{rms,in} [V]		Output RMS V _{rms,out} [V]			
RMS Normal Mode Gain [–] = $G_{rms} = (V_{rms,out} - V_{offset}) / (V_{rms,in})$					
Calculated Gain Error = 100 % (G _{calc} – G _{rms}) / G _{rms}					
Typical and Maximum Values from AD620AN Specification Sheet					
Typical Gain Error (G = 1) [%]		Maximum Gain Error (G = 1) [%]			
Typical Output Offset (±15 V) [µV]		Maximum Output Offset (±15 V) [µv]			
Typical CMRR (G = 1) [dB]		Minimum CMRR (G = 1) [dB]			

Observations:

Using the logarithmic identity $log_b(x y) = log_b(x) + log_b(y)$, determine how many dB a multiplication factor of 1000 corresponds to (don't forget to multiply by 20). Explain during which calculation step above that this factor is relevant. (5 pts)

Is your measured $V_{rms,in} = \frac{0.1V}{\sqrt{8}}$? What would cause this measurement to be off by a factor of 2? (5 pts)

5.4 NATURAL FREQUENCY AND DAMPING RATIO OF VIBRATING BEAM (30 PTS)

Geometric Properties of Beam and Calculation of Natural Frequency				
Length L [m]		Diameter D [m]	0.0127	
Density ρ [kg/m ³]	2700	Modulus E [Pa]	$6.9 imes 10^{10}$	
Calculated Natural Frequency [rad/s] = $\omega_{n,calc} = 0.14 \frac{D}{L^2} \sqrt{\frac{E}{\rho}} 2\pi$				

Measured Natural Frequency and Damping Ratio			
First Chosen Peak Voltage V ₁ [mV]	ak Voltage V ₁ [mV] Second Chosen Peak Voltage V ₂ [mV]		
First Chosen Peak Time t ₁ [ms]	Second Chosen Peak Time t ₂ [ms]		
Cursor ∆t [ms]	Cursor frequency f _{cursor} [Hz]		
N = Number of Periods between chosen Peaks			
Measured Damped Natural Frequency [rad/s] ω_d			
Damping Ratio ζ			
Measured Natural Frequency [rad/s] $\omega_{n,meas}$			
Calculated-Measured Difference [%]= 100 % × $\frac{\omega_{n,calc} - \omega_{n,meas}}{\omega_{n,meas}}$			

Observations: