| NAME | |------| |------| # ME 360: FUNDAMENTALS OF SIGNAL PROCESSING, INSTRUMENTATION, AND CONTROL # Experiment No. 4 Modeling and Identification of an Electric Motor using Step Response Methods Data Sheet ## 6.2 STEADY-STATE GAIN (20 PTS) | V _{DAC} [V] | V _{DMM} [V] | $K = V_{DMM} / V_{DAC} [V/V]$ | |----------------------|----------------------|-------------------------------| | 3 | | | | 4 | | | | 5 | | | | 6 | | | #### **Observations:** ### 6.3 STEP RESPONSE (30 PTS) | Method | Data | | |---|---|-----| | | V _{in} (t ≥ 0) | 4 V | | | V _{out} (∞) | | | | $K = V_{out}(\infty) / V_{in}(t \ge 0)$ | | | Time at 63.2 % of Maximum Change | τ _{63.2} | | | Steady-state Asymptote and Tangent at t = 0 | τ _{tan} | | | Integral of Response Curve | K _{int} | | | | [⊤] int | | | Iterative Fit of Observed Response Data | K_{fit} | | | | $ au_{fit}$ | | #### **Observations:** Which method do you think is the most accurate calculation of the time constant? Why? (10 pts) How sensitive is τ_{int} to changes in the steady state voltage level? How accurate is this voltage level? (10 pts)