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ME 360: FUNDAMENTALS OF SIGNAL PROCESSING,  
INSTRUMENTATION AND CONTROL 

 

Experiment No. 4 
Modeling and Identification of an Electric Motor using Step Response 

Methods 
 
1. CREDITS 
 Originated:     T-C. Tsao and N. R. Miller, October 1995 
 Last Updated:   D. Block, August 2007 
 
2. OBJECTIVE 
 Measure the steady-state gain K and time constant τ of a motor-generator system. 
 

3. KEY CONCEPTS 
(a) A DC motor may be approximated as a first-order, linear system where the system input is the applied 

voltage Vin(t) and the system output is motor speed ω(t). 

   

Vin(s) ω(s)G(s) = ^ Km

τ s + 1

^ ^

 
(b) In this experiment, a motor-generator combination serves as a first-order system with a voltage input Vin and 

a voltage output Vout. 
 

    

G(s) = ^
τ s + 1

Ggen(s) = Kv,g 
Vin(s) ω(s)
^ ^ Vout(s)^

Km ^

 
                                | | 

   

Vin(s)
G(s) = ^ K

τ s + 1

^ Vout(s)^

 
(c) The two parameters characterizing a first-order system are the steady-state gain K and the time constant τ.  
(d) A linear model can be used even though K varies with input voltage and the system is actually nonlinear.  

Models are rarely perfect. 
(e) We determine K and τ by observing the system response to a known input. 
(f) System response is the time history of the system output. 
(g) Determining system parameters from measured response data is known as system identification. 
(h) Several alternative methods exist for extracting K and τ from the system-response data.  These methods 

differ in terms of  
(i) the number of data points used (from a single value to all the data) and 
(ii) graphical vs. numerical  

 

(i) Human evaluation and judgment can be a useful component of the data analysis and yield valuable insights 
into dynamic system behavior. 
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4. OVERVIEW OF METHODS 
 In this experiment, we study the steady-state and dynamic characteristics of a DC motor coupled to a DC 
generator.  The DC generator is used as a tachometer to measure the speed of the motor.  The motor-generator 
combination is modeled as a first-order, linear system with steady-state gain K and time constant τ.  A first-order, 
linear system is the simplest type of dynamic system and thus provides a good introduction to important dynamic 
system concepts.  The first-order system is also important from a practical viewpoint as many real-world systems 
can be modeled in this manner.  The DC motor considered in this experiment is just one such example. 
 

 The motor-generator system considered here is of the basic input-output type.  The single input is Vin, the 
voltage applied to motor.  The single output is Vout, the voltage produced by the generator.  This first-order 
system may be described in the following ways. 
 

Governing Equation:      τ 
dVout

dt
(t)   +  Vout (t)  =  K  Vin (t)           Vout (0) =  Vo 

 

Transfer Function:       Ĝ(s)    =  K
τ s + 1

    
 

Steady-state Response:    Vout (t)  =  K  Vin                      Vin (t)  =  constant, all t 
 

Step Response:        Vout (t)  =  K  (Vo   –  Vin) exp (-t / τ)  +  K Vin     Vin (t)  =  constant, t ≥ 0 
 
 Our goal is to determine K and τ and compare these measurements with values calculated from a more 
detailed physical model of the motor-generator system.  This more detailed model relates K and τ to other 
physical parameters that can be independently measured.  Based on nominal values reported by the 
manufacturer, we conclude that K lies between 1.1 and 1.3 and τ lies between 40 ms and 80 ms. 
 
 There are many ways to obtain K and τ from observed system behavior.  This diversity is good because it 
puts a wide variety of useful tools at our disposal.  This diversity is bad because we must sort out the differences 
between the various methods and assess the relative merits of each.  Our choice is complicated by two real-
world problems: 
 

(a) Our model of the system is imperfect. 
(b) Our methods of measuring system response are imperfect. 
 
 Modeling errors arise from system nonlinearities and higher-order effects; experimental errors arise from 
noise and measurement uncertainty.  Thus, different methods may give different values of K and τ.  We wish to 
identify those methods that are least sensitive to modeling and experimental errors.  Our basic strategy here is 
that the more data used in the analysis, the better the overall result will be.  This strategy leads us away from 
local or point methods and towards global or integral methods.  Averaging is usually an effective means of 
reducing error in measured values. 
 
5. SYNOPSIS OF PROCEDURE 
 The digital multimeter, function generator, PC-based hardware, and MATLAB software are used to carry out 
the following measurements. 
 

(a) The steady-state gain of the system is determined by applying a series of input voltages to the motor and 
measuring the resulting steady-state output voltages of the generator using the digital multimeter.  Here, we 
see that K varies with input voltage indicating that the system is slightly nonlinear. 

(b) The step response of the system is studied by making a step change in the input voltage to the motor and 
sampling the output voltage of the generator as a function of time using the oscilloscope and PC-based 
data-acquisition system.  The system parameters K and τ are then determined from the sampled output 
voltage waveform using the following four methods. 

 
(i) Locate the time at which the voltage change is 63.2 % of the maximum change. 
(ii) Find the intersection of the tangent at t = 0 with the steady-state asymptote (a horizontal line at the final 

voltage). 
(iii) Use a numerical method based on the integral of the step response data. 
(iv) Plot the observed response together with the predicted response based on guessed values of K and τ; 

iterate on K and τ until good agreement is achieved. 
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6. PROCEDURE 
 The procedure is presented at three levels of detail.  The lowest level of detail is set forth in the 
synopsis above and the headings of this section.  Review this information first to get a good intuitive feel 
for the overall scope of the experiment.  The second level of detail is a brief description of each specific 
task often accompanied by a schematic or sketch.  This description together with the Data Sheet is 
usually sufficient to understand and carry out the procedure during the laboratory session.  This material 
should be thoroughly reviewed before coming to the laboratory.  Skip over the detailed procedure in 
preparing for the laboratory session as this information only makes sense when the equipment is at 
hand. 
 
Important General Information – Please Read Carefully 

(a) Always turn off the power supplies when changing connections.  Dangling leads can easily contact 
the metal tabletop creating a short, blowing a fuse, creating an unsafe situation or damaging the 
equipment. 

(b) Disconnect the leads from the instruments when not in use.  Connect the instruments last after the wiring is 
carefully checked. 

(c) If your station is missing something, ask your Laboratory Assistant to replace it.  Do not take items from 
other stations. 

 
6.1 Wiring the System 
 Figure 1 shows how the system is wired. 
 

Detailed Information for Wiring System 

 A brief summary of the connections is given below. 
 
DAC Output to Power Amplifier 
 A gray shielded cable with three banana plugs on each end connects Analog Output Channel 0 to the 
input of the Power Amplifier (labeled simply "Amplifier" on the patch panel).  Red is positive or high, black 
is negative or low, and white is the shield.  At the amplifier end, connect red to red, black to black, and 
white to white.  At the DAC end, connect red to red and both black and white to black. 
 
Amplifier Output to Motor Input 
 A second gray shielded cable with three banana plugs on each end connects the output of the power 
amplifier to the input of the motor.  Red is positive or high, black is negative or low, and white is ground.  
Follow red-black-white color-coding on each end of the cable. 
 
Generator Output to ADC Input 
 Two banana-plug patch cords connect the generator output to Analog Input Channel 0.  On the 
generator end, orange is positive or high and gray is negative or low.  On the analog-input end, red is 
positive or high and black is negative or low. 
 
Connections to Oscilloscope 
 The DAC output is routed to Channel 1 of the oscilloscope, and the generator output is routed to 
Channel 2 so that the system input and output waveforms can both be displayed.  Two cables each with a 
BNC connector on one end and a pair of banana plugs on the other end are used for this purpose.  Red-
black color-coding is followed. 
 
Connections to Digital Multimeter 
 A pair of banana-plug patch cords connects the inputs of Analog Channel 0 to the voltage inputs of the 
multimeter.  Red-black color-coding is again observed. 
 
Push Button 
 The push button from the drawer of the station is connected to the phone jack on the patch panel in the 
section labeled "Amp Inhibit". 

   
  Due to technical difficulties we now skip to page six.  Page six was created in another program and would 

take a large amount of time to reproduce.   
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6.2 Steady-state Gain 
6.2.1 Initial Startup 
(a) Power on the oscilloscope and digital multimeter.  Put the oscilloscope in roll mode and display both 

Channels 1 and 2.  Set the vertical scale to 5 V/div for Channel 1 and 1 V/div for Channel 2.  Set the 
horizontal scale to 500 ms/div.  Move the reference for Channel 2 to the bottom of the screen and the 
reference position for Channel 1 to the second grid division from the top. 

 
(b) Start MATLAB by double clicking the MATLAB icon on the Windows desktop. 
 
6.2.2 Determine Steady-state Gain for Motor Inputs of 3, 4, 5 and 6 V 
(c) We will use a MATLAB function ‘meu2y’ to collect data from the benches PC analog inputs.  See Appendix 

D for more help on the ‘meu2y’ MATLAB function.   
(d) Use the commands given below to generate a constant input to the motor for 10 s.  After steady state is 

reached, measure the output of the generator using the DMM.  Enter this value on the Data Sheet.  
Compute the gain by taking the ratio of the output voltage to the input voltage. 

 

MATLAB Command Action 
vdacs = [3 4 5 6] enter the test input voltages into an array 
tstep = 0.010 set a 10-ms time step 
runtime = 10 set a run time of 10 s 
t = tstep:tstep:runtime set up the array of sampling times from 0 to 

10 s in 10-ms steps; t is thus a row vector of 
length 1000 equal to [0.01 0.02 0.03 
... 9.99 10.00] 

t = t' convert t to an equivalent column vector 

vdac = vdacs(1) * ones(length(t),1); generate a column vector of length 1000 with 
all elements set to vdacs(1) = 3 

type the next command, depress and hold the push button, then press return or enter from the keyboard; hold 
the button until meu2y finishes; after the motor reaches steady state, read the generator voltage on the DMM, 
and record this value on the Data Sheet; the value will fluctuate so read the value to two digits past the decimal 
point; the motor runs for a total of 10 s and becomes steady shortly after startup. 
[vgen,junk] = meu2y (vdac,vdac,1000*tstep,0) output vdac to the motor simultaneously 

capturing the generator output in the vgen 
column vector 

vdac = vdacs(2) * ones(length(t),1) 
[vgen,junk] = meu2y (vdac,vdac,1000*tstep,0) 

vdac = vdacs(3) * ones(length(t),1) 
[vgen,junk] = meu2y (vdac,vdac,1000*tstep,0) 

vdac = vdacs(4) * ones(length(t),1) 
[vgen,junk] = meu2y (vdac,vdac,1000*tstep,0) 

repeat for remainder of the test voltages; for 
each case, record the reading from the DMM 
on the Data Sheet to two digits past the 
decimal point; calculate the gain K and record 
this on the data sheet; note that the gain varies 
with input voltage indicating that the system is 
slightly nonlinear 

 
6.3 Step Response 
6.3.1 Obtain Response to a 4-V Step Input 
(a) Use similar steps as above to write some MATLAB code to apply a 4-V step input to the motor and record 

and display the results in a plot.  Plot both the input step and the tachometer output verses time on one plot.  
At the same time use the oscilloscope to display both the step and tachometer signals. 

 
6.3.2 Time Constant from 63.2-% Point on Response Curve 
(b) Use the X and Y cursors on the oscilloscope to (i) measure the steady-state gain and (ii) determine the time 

at which the change in the output voltage reaches 63.2 % of its final value.  Here, time is measured with 
respect to the point at which the step change in the input voltage occurs. 
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Detailed Information for Measuring Time Constant Using Oscilloscope Cursors 

(i) Turn the oscilloscope cursors on, and select Channel 2 for the cursor source.  Align the Y1(2) cursor 
with the steady-state output voltage.  Record this value as Vout (∞) on the Data Sheet.  Use this value 
and the input step size of Vin (t ≥ 0) = 4 V to compute K63.2% = Vout (∞) / Vin (t ≥ 0). 

 

(ii) Calculate ∆Vout (τ) = 63.2 % × Vout (∞).  Adjust the Y1(2) cursor to read this value. 
 

(iii) Align the X 1 cursor with the step change in the input voltage. 
 

(iv) Align the X 2 cursor with the intersection of the Y1(2) cursor and the output voltage.  Record the ∆t (2) 
cursor reading on the data sheet as τ63.2%. 

 

Important Note 
 

 The above method employs a single point on the step-response curve and thus exhibits maximum sensitivity 
to experimental and modeling errors.  The value of 63.2 % is a convenient choice because (i) the time constant 
can be read directly and (ii) the slope of the step-response curve at this point facilitates accurate positioning of 
both cursors.  What is most important, however, is that the point is representative of the step response.  Because 
the step response for this case is Vout (t) = Vout (∞) [1 – exp (-t / τ)], the time constant is given by 
 
                      τ   =   -t / ln [1 – Vout (t) / Vout(∞)],  
 
where t and Vout (t) correspond to any point on the step-response curve.  This method is described in greater 
detail in the Appendix C. 
 
6.3.3 Time Constant from Intersection of Steady-state Asymptote and Tangent at t = 0 
(c) The second method of determining the time constant τ is based on the slope of the tangent at t = 0.  To 

execute this method, use the plot you created in MATLAB.  You may have to zoom in on the initial slope to 
fit the line.  We then print out this plot and draw (i) a tangent to the step response curve at t = 0 and (ii) a 
horizontal line at the steady-state voltage (steady-state asymptote) as shown below.  The elapsed time 
between the step input and the point at which these two lines intersect is the time constant τ.  The theory 
underlying this method is presented in the Appendix C.     
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(d) Perform the graphical analysis, and record this value of the time constant on the Data Sheet as τtangent.   
 
6.3.4 Time Constant from Integral of Step Response 
(e) The MATLAB commands below implement a method suitable for computer data analysis.  This method uses 

all the data and is thus global.  The method is based on integrating the step response with the trapz 
MATLAB function.   

(i) Determine the final value of the step response (or steady-state output).  Do this by averaging the 
last half of the collected data.  Ask your TA to explain the “:” operator in MATLAB so you can 
access a subset of the collected data. 

(ii) Compute the steady-state gain based on the ratio of the steady-state output voltage to the step 
input voltage.  Record this value on the Data Sheet as Kint. 

(iii) Use the MATLAB help capability to learn about the trapz function. 
(iv) Compute the system time constant using the integral method describe in Appendix C. Record this 

value on the Data Sheet as τint 
        

6.3.5 Time Constant from a "Fit" of Step Response Data 

(f) The last step-response method involves plotting the observed response together with the predicted response 
based on K and τ found with other methods, then iterating on K and τ until good agreement between predicted 
and observed behavior is achieved.  So start out with a K and τ from one of the above methods and in MATLAB 
calculate the predicted response (use the function “exp” for the exponential).  On the same plot, plot the 
sampled data response and the predicted response verses time.  Repeat with different values of K and τ until 
good agreement is achieved; (in MATLAB the up-arrow key can be used to access previous commands or the 
commands can be put in an M-file 
Hint: Typing the first letter of the command followed by the up-arrow key returns to the last command starting 
with that letter.   
Record the final values of K and τ on the Data Sheet as Kfit and τfit. 
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APPENDIX A. MOTOR-GENERATOR SYSTEM 
A.1 Basic Layout 
 The system analyzed in this experiment consists of a DC motor coupled to a DC generator (a motor run 
backwards) as shown in Fig. A.1.  The motor converts a voltage into angular speed, and the generator, in turn, 
converts this angular speed back into a voltage.  The generator acts as a tachometer, a device for measuring 
rotational speed.  Together, the motor-generator combination gives us a system that takes an input voltage and 
produces an output voltage.  The rotational speed of the shaft serves as an intermediate variable of important 
physical significance.  This voltage-in / voltage-out configuration is ideally suited to the DAC / ADC computer-
based instrument available at the laboratory station. 
 

 

MotorGeneratorVin

Flywheel

Vout

ω

Rotational 
Speed

 

 Figure A.1 Motor-generator system. 

 The motor and generator are connected to the computer as shown in Fig. A.2.  Here, we see that the DAC 
output voltage is routed to a power amplifier rather than directly to the motor.  The power amplifier is needed 
because the current-producing capability of the DAC is insufficient to drive the motor.  Although the amplifier does 
provide a voltage gain of about 2.4, its primary purpose is to meet the power demands of the motor.  The need 
for an intermediate component to handle the power requirements of the system arises frequently in real-world 
applications and illustrates an important principle in interfacing low-power electronic equipment with high-power 
mechanical devices.   
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 Figure A.2 Block diagram showing connections between instruments and motor-generator. 

A.2 Dynamic Characteristics 
 Although the system used in this experiment consists of a motor and a generator connected together such 
that a voltage input produces a voltage output, our main interest lies in the way the motor speed responds to 
changes in input.  We can ignore the dynamics characteristics of the generator and instead think of it simply as a 
speed sensor.  To better understand the relationship between input and speed, consider the following simple 
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analogy from everyday life.  Imagine driving on a level highway (I-57 or I-74, for example).  The system here is 
the vehicle (analogous to the motor), the input is throttle position (analogous to input voltage), and the output is 
vehicle speed (analogous to motor speed or generator output).  This is a first-order system with a characteristic 
time constant τ.  We might be tempted to think that this is a second-order system because the equations of 
motion involve the second-order derivative acceleration.  However, the system is actually first-order because 
acceleration is the first-order derivative of the system state variable speed.  For the system to be linear, the force 
opposing the motion must be linearly proportional to vehicle speed.  In the vehicle example, the resistive force is 
actually a constant (rolling friction) plus a second constant times the square of vehicle speed (aerodynamic drag) 
with no linear term whatsoever.  Despite this inherently nonlinear behavior, dynamic response is very similar to 
that of a linear system.  Indeed, because very few real-world systems are truly linear, the analysis considered in 
this experiment would be quite limited if the concepts could not also be extended to quasi-linear systems such as 
the vehicle example given here. 
 
 Vehicle speed does not respond instantaneously to changes in throttle position owing to vehicle inertia.  
Rather, as a first-order system, speed exhibits an exponential response to a step input and an exponential 
approach to a constant offset for a ramp input.  This behavior is illustrated in Fig. A.3.  We expect the same type 
of response for the motor used in this experiment. 
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 Figure A.3 Time history of throttle position and vehicle speed. 

 Returning to the motor-generator combination, the system is characterized by two parameters.  One 
parameter is K, the steady-state gain or proportionality between input voltage and output voltage.  Suppose that 1 
V is applied to the input of the motor.  After a while, the motor attains a certain constant speed, say 1200 rpm.  
The generator, in turn, converts this speed to an output voltage, say 1.2 V.  The steady-state gain is then Vout / Vin 
= 1.2.  If the system is linear, then an input voltage of 2 V to the motor produces an output voltage of 1.2 × 2 V = 
2.4 V from the generator.  Likewise, an input voltage of 0.5 V produces an output voltage of 1.2 × 0.5 V = 0.6 V.  
For a linear system, we have that Vout / Vin = K = 1.2 for all Vin.  As we shall see later, K varies slightly with input 
voltage.  The second parameter is the time constant τ that characterizes the dynamic response of the system.  
The time constant depends on the system inertia or "mass" and the relationship between energy losses (i. e., 
conversion to thermal energy) and angular velocity.  Here, the system "mass" is actually the moment of inertia of 
the rotating components, and the losses arise from both electrical and mechanical "friction" effects. 
 

 The purpose of this experiment is to measure K and τ from the dynamic response of the motor-generator 
system using the two methods previously described; namely, step response and sinusoidal frequency response.  
Before presenting these methods in detail, let us examine the system more closely to better understand its 
dynamic behavior.   
 
A.3 Block Diagram, Governing Equations, and Transfer Function 
 Figure A.4 is an expanded block diagram that sets forth the various elements of the motor so that its overall 
dynamic behavior can be more easily analyzed.  The computer generates a digital representation of the input 
waveform that is sent to the digital-to-analog converter (DAC).  The DAC converts this digital form to an analog 
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voltage VDAC between -10 and +10 V.  The power amplifier increases this voltage by the amplifier gain Kamp that 
is nominally 2.4.  This voltage is, in turn, applied to input terminals of the motor.  To understand how this applied 
voltage creates the current necessary to drive the motor, we must consider the electric circuit of the motor as 
shown in Fig. A.5.  This simple circuit consists of three components: (a) a resistor representing the resistance of 
the motor coil, (b) an inductor representing the inductance of the motor coil, and (c) a voltage source representing 
the reverse voltage produced by the motor.  The reverse voltage is proportional to the speed at which the shaft 
turns and, in effect, represents the generator effect of the motor.  Using Kirchoff's Voltage Law along with the 
component equations for a resistor and inductor, we have the governing equation for the electrical circuit of the 
motor.  Thus, 
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 Figure A.4 Block diagram of motor-generator system showing main elements of dynamic response. 
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 Figure A.5 Electric circuit of motor. 

Governing Equation for Electrical Circuit of Motor 

                   i(t) Rc  +  Lc 
 

di(t)
dt

  =  Vamp(t)  –  Vr(t) 

 
 We can solve this equation in the time domain using any of several methods or in the transform domain 
using either (a) the Laplace transform Method for an initial-value problem or (b) the Fourier Transform Method for 
a quasi-steady periodic input.  The advantage of the transform domain is that each equation is converted to an 
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algebraic form that can, in turn, be written as a transfer function.  The various transfer functions representing the 
governing equations for the different parts of the overall system can then be combined using block algebra. 
 
 The corresponding Laplace and Fourier Transforms of the above governing equation are: 
 
Laplace Transform of Governing Equation for Electrical Circuit of Motor 

                 Lc s   ˆ i (s)  –  i(0)  +  Rc   ˆ i (s)  =  ˆ V amp(s)  –  ˆ V r(s) 
 
Fourier Transform of Governing Equation for Electrical Circuit of Motor 

                  Lc (j ω)   ˜ i (ω)  +  Rc   ˜ i (ω)  =  ˜ V amp(ω)  –  ˜ V r(ω) 
 
 Solving for   ˆ i (s) and    ˜ i (ω), we have 
 
Laplace Transfer Function 
                  

    ˆ i (s)  =  
Vamp(s)  −  Vr (s)

Lc  s  +  Rc
  +  i(0)

Lc s + Rc
          ˆ G (s)  =  1

Lc s  +  Rc
 

 
Fourier Transfer Function 
 

    ˆ i (ω)  =  
V
~

amp(ω) –  V
~

r(ω)
Lc (jω)  +  Rc

                 G
~

(s)  =  1
Lc (jω) +  Rc

 

 

 We observe that the two transfer functions are the same except that (a) (jω) is substituted for s and (b) the 
initial condition term is absent from the Fourier Transfer form.  Following the standard convention in linear 
systems analysis, we shall write the transfer function in Laplace form but without the initial-value term.  This may 
seem a bit inconsistent at first, but we must remember that the purpose of the block diagram is to allow us to 
easily visualize the relationships between the various elements of system.  Cluttering up the diagram with subtle 
distinctions and messy extra terms only serves to obscure the relationships and thus defeat the basic purpose of 
the block diagram.  We must always keep these simplifications in the back of our mind, however. 
 
 We shall further simplify the notation by using the same variable for both its time-dependent function and its 
Laplace or Fourier transform.  Thus, "i" may represent i(t), î(s) , or i~(ω)  depending on context.  Again, we 
choose simplicity of notation over precise definitions to improve the overall clarity of the expression.  
 
Simplified Form of Transfer Function of Motor Coil 
 

                          i  =  
Vamp  − Vr

Lc s  +  Rc
 

 
 Consider again the system block diagram shown in Fig. A.4.  We next consider the following three simple 
proportional relationships. 
 
Current-to-Torque Conversion 
                           Τa  =  KΤ,m i 
 
where Τ is armature torque, i is coil current, and KΤ,m is the torque coefficient of the motor.  KΤ,m is taken to be a 
constant of the motor. 
 
Reverse Voltage of Motor 
                           Vr  =  KV,m ω 
 
where Vr is reverse voltage of the motor, ω is the angular speed of the motor, and KV,m is the voltage coefficient 
of the motor.  KV,m is also taken to be a constant of the motor. 
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Reverse Voltage of Generator 
                           Vgen  =  KV,g ω 
 
where Vgen is reverse voltage of the generator, ω is the angular speed of the generator, and KV,g is the voltage 
coefficient of the generator.  Note that the generator follows the same analysis as the motor.  However, because 
the generator feeds the high-impedance inputs of the ADC, oscilloscope, and multimeter, the current is nearly 
always zero, and the output voltage is just the reverse voltage of the generator. 
 
 The remaining two boxes relate to the mechanical portion of the system; namely, (a) the rotating shaft, 
(b) the shaft bearings and other elements that provide the frictional load, and (c) the flywheel.   
 
Governing Equation for Rotating Shaft 

 Applying Newton's Law of Motion to a rotating body, we have 
 

                         J dω(t)
dt

 =  Τa(t)  –  Τf(t) 
 

where ω(t) is angular speed, Τa(t) is armature torque, Τf(t) is frictional torque, and J is the moment of inertia of the 
shaft and flywheel.  The corresponding simplified transfer function is 
 

                            ω  =  Τa  −  Τf
Js

  . 

Frictional Torque 

 Lastly, the frictional torque is proportional to angular speed as follows. 
 

                             Τf =  B ω 
 

where Τf is frictional torque, ω is the angular speed of the generator, and B is the coefficient of the kinetic friction.  
B is taken to be a constant representing the total bearing friction in the motor, generator, and flywheel. 
 

 Now we can combine all the various elements to obtain a single transfer function between VDAC and Vgen.  
We begin with the mechanical elements of the system and work backward to VDAC and forward to Vgen.  Thus, 
 

           
Vgen

VDAC
 =  

Kamp  KV,g  KΤ,m

(Lc  s  +  Rc)(J  s  +  B) +  KV,m  KΤ,m
  =  K

( τ1s  +  1)  ( τ1s  +  1)
 

 

where                       K  =  
Kamp  KV,g  KΤ,m

KV,m  KΤ,m  +  Rc  B
  , 

 

                 τ1 =  τm  
2  ρe

1 +  ρe  −   (1 +  ρe )2  −  4  ρe  K1 
 

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟    , 

 

                 τ2 =  τm  
2  ρe

1 +  ρe  +   (1 +  ρe)2
 −  4  ρe  K1  

 
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟    , 

 

                          K1 =  
KV,m  KΤ,m  +  Rc  B

Rc  B
  , 

 

                 τm =  J
B

 ,     τe =  Lc
Rc

  ,   and   ρe =  τe
τm

   . 
 

 Here, K is the steady-state gain, τm is the mechanical time constant of the system, and τe is the electrical 
time constant of the system.  As shown, the system is second-order; however, because τe << τm, we have the 
limiting case of ρe → 0 for which 

             τ1 → τ  =  τm
K1

  =  Rc  J
KV,m  KΤ,m  +  Rc  B

   and   τ2 = 0  . 
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 The corresponding transfer function is 
 

                           
Vgen
VDAC

 =  K
τ s + 1  . 

 
 A listing of important system parameters is given in Table A.1.  Here, we see that ρe is very small and that 
the assumption of first-order system behavior is thus very good. 

 Table A.1 Parameters of Motor-generator System. 

Symbol Description Value Units 
KΤ,m Torque coefficient of the motor (1) 0.0572 N-m/A 

KV,m Voltage coefficient of motor (1) 0.0573 V-s 

Rc Coil resistance of motor (1) 3.76 Ω 

Lc Coil inductance of motor (1) 0.00125 H 

Bm Friction coefficient of motor (1) 2.43 × 10-5 N-m-s 

Jm Moment of inertia of motor (1) 2.65 × 10-6 kg-m2 

KV,g Voltage coefficient of generator (1) 0.0287 V-s 

Jg Moment of inertia of generator (2) 2.65 × 10-6 kg-m2 

Kamp Gain of power amplifier (3) 2.4 V/V 

Jfly Moment of inertia of fly wheel (4) 5.10 × 10-5 kg-m2 

Jcoup Moment of inertia of couplers (4) 3.06 × 10-6 kg-m2 

Bother Friction coefficient of components other than motor (5) 1 × 10-5 N-m-s 

J Moment of inertia of system = Jg + Jfly + 3 Jcon (6) 6.55 × 10-5 kg-m2 

B Friction coefficient of system = Bm + Bother (7) 3.43 × 10-5 N-m-s 
τe Electrical time constant of system (7) 3.41 × 10-4 s 
τm Mechanical time constant of system (7) 1.91 s 

K1 Time constant reduction factor (7) 27.05 – 
ρe Time constant ratio (7) 1.78 × 10-4 – 

K Steady-state gain of system (7) 1.156 V/V 
τ1 Primary time constant of system (7) 70 ms 
τ2 Secondary time constant of system (7) 0.3 ms 

 
Notes: 

1. Based on manufacturer's specifications. 
2. Estimated to be the same as the motor. 
3. Parameter of power amplifier. 
4. Calculated from physical dimensions and material properties of flywheel and connector. 
5. Estimated.  As B is increased, the (primary) system time constant decreases. 
6. Other components make negligible contribution to moment of inertia. 
7. Calculated from equations of system model. 
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APPENDIX B. FIRST-ORDER SYSTEM BEHAVIOR 
 The important dynamic characteristics of a first-order system are summarized in Table B.1. 

 Table B.1 Summary of First-order System Analysis. 

Governing Equation 

Normalized Form 
dt

dVgen   =  
KVDAC(t)  –  Vgen(t)

τ
    Vgen (0) =  Vgo    τ  = time constant 

Laplace  
Transform Form 

ˆ V gen (s)  =  ˆ G (s)  VDAC(s)  +  
τVo
K

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  ˆ G (s)  =  K

τ  s + 1
 

Fourier  
Transform Form 

˜ V gen (ω)  =  ˜ G (ω) ˜ V DAC (ω) ˜ G (ω)   = K
τ  (j  ω)  +  1

 

Transfer  
Function Form 

VDAC(s) Vgen(s)K
τ s + 1

 
 

Solutions 
General  

Time-Domain 
Solution 

Vgen (t)  =  exp(- t / τ) exp(t'/ τ)  K  VDAC(t'
0

t

∫ ) dt'   +  Vgo 

 
Steady-state Input 

Input VDAC(t) VDAC (t)  =  VDAC  =  constant 
Output Vgen(t) Vgen (t)  =  K VDAC 

 
Step Input 

Input VDAC(t) VDAC (t) =  VDAC  =  constant   t > to    Vgen(0)  =   Vgo 

 
  Vgen (t)  =      K VDAC      +     (Vgo – K VDAC) exp [ -(t – to) / τ ] 
                                               

            steady state         exponential decay of initial offset 

Output Vgen(t) 

Response of First-order, Linear
System to a Step Input

t

output changes
exponentially
with time

step input

Vgo

to

Vgen
Vgf =
KVDAC
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 Figure C.1 Typical step-input response. 
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 Figure C.2 Two graphical methods of determining system time constant. 

 
APPENDIX C. STEP RESPONSE 
 In our experiment, we make a step change in the input voltage and observe how the system responds.  The 
expected waveform is shown in Fig. C.1.  Here, we have an exponential approach to a new steady state speed 
and generator output voltage. 
 
 We use four algorithms to extract values for the steady-state gain K and time constant τ from the step 
response. 
 
Step Response Method 1: Time constant is time required for voltage to reach 63.2 % of its final value 
 

 This method is illustrated in Fig. C.2 
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 The parametric step response of the output voltage for the special case of Vo = 0 is given by 
 
                     Vout (t)  =  Vout (∞) [ 1 – exp (-t / τ) ] 
 
                     Vout(τ)   =  Vout (∞) [ 1 – exp (-1) ] =  0.632 Vout (∞) 
 
 As previously noted, the 63.2-% point is a particularly convenient choice because (a) the time constant can 
be read directly and (b) the slope of the curve at this point facilitates graphical analysis.  However, other 
representative points can be used.  In this case, the time constant τ is calculated from 
 

                       τ   =  -t / ln [ 1 – Vout (t) / Vout (∞) ] . 
 
Step Response Method 2: Intersection of steady-state asymptote and tangent at t = 0 
 
 This method is also illustrated in Fig. C.2.  A tangent is constructed at t = 0, and the time constant is the 
intersection of this line with the steady-state asymptote defined by V = Vout (∞).  From the parametric step 
response, we determine that the slope of the tangent at t = 0 is given by 
 

                         
dVout

dt t  =  0
 =  Vout(∞)

τ
 . 

 
 The equation of the tangent line is then 
 

                         Vtangent (t)  =  Vout(∞)
τ

 t . 
 
 The intersection of the tangent and the asymptote is then given by 
 

              Vtangent (t)  =  Vout(∞)
τ

 t  =  Vout (∞)    or     t  =  τ . 
 
 For both Method 1 and Method 2, K is just the ratio of the output voltage to the input voltage at steady state.  
Thus, 
 

                          K  =  Vout (∞)
Vin (t ≥ 0)

 

  
Step Response Method 3: Integral of step response 
 

 A decided advantage of the graphical algorithms used in Methods 1 and 2 above stems from the fact that a 
person can quickly recognize and potentially compensate for a host of real-world problems.  A "good" tangent or 
a "good" point can be selected even if the data are noisy.  Reducing this level of sophistication to a numerical 
algorithm that the computer can execute is a challenge indeed.  On the other hand, numerical methods are 
desirable because graphical methods are inherently subjective. 
 
 As we shall see, the output of the motor-generator system is quite noisy even when the input is clean.  This 
fact is not accounted for in our simple linear model of the system.  The model handles a noisy input but does not 
account for the noise produced by the motor itself.  We need a numerical method that minimizes the effect of this 
noise.  Because integrals tend to reduce noise, Method 3 is based on the integrated signal. 
 
 From the parametric step response 
 

                     Vout (t)  =  Vout (∞) [ 1 – exp (-t / τ) ] 
 
we can readily show that 

                       τ  =    1 −  
Vout(t)
Vout(∞)

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
0

  ∞

∫  dt . 

 
 The integral can be computed numerically from the response data. 
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Step Response Method 4: Iterative fit of response data 
 
 In this method, we plot the parametric response curve together with the response data using guessed 
values of K and τ and iterate on the parameters until good agreement is achieved.  This method is easier to 
implement than a conventional curve fit and further more demonstrates the effect that K and τ each have on the 
system response. 
 
 
 
Appendix D.  MATLAB Functions 
 In this experiment, we use the MATLAB software to generate the desired input waveforms and control the 
PC-based hardware.  We employ several M-files specifically designed to ease this process.  A brief discussion of 
these M-files and the associated MATLAB functions is in order. 
 
D.1 M-file to Control the PC-based Hardware 
 The operation of the analog-to-digital and digital-to-analog converters is controlled by the following MATLAB 
function. 
 
[y0, y1] = meu2y (u0, u1, stepms, echo) 
 

 "meu2y" simultaneously (a) samples Analog Input Channel 0 storing the results in column vector "y0", 
(b) samples Analog Input Channel 1 storing the results in column vector "y1", (c) outputs the column vector of 
voltages "u0" to Analog Output Channel 0, and (d) outputs the column vector of voltages "u1" to Analog Output 
Channel 1.  "stepms" is the time step in ms, and "echo" is a flag that allows the input to be echoed to the output.  
We normally do not use the echoing capability of the "meu2y" function, and thus this argument is set to 0.  
Sampling begins a short delay time after the "meu2y" command is entered.  The "meu2y" function executes as 
many time steps as there are elements in the "u0" and "u1" column vectors. 
 
D.2 Standard MATLAB Functions 
 
 We also use the following standard MATLAB functions.   
 
mean(V) computes the mean of array of values V 

 
trapz(t, V) computes an approximation of the integral of V with respect to t using the Trapezoidal Rule; t 

and V are vectors of the same length containing discrete values of the integration variables 
 
 To learn more about these built-in functions, type "help mean" or  "help trapz" at the MATLAB prompt. 




