
ME461 1 Lab #6

ME 461 Laboratory #6
The Orange Pi Zero, Embedded Linux and I2C communication

Goals:

1. Become familiar with the Linux command prompt or terminal.
2. Use I2C to communicate between Linux running on the Orange Pi Zero development board and

your MSP430F2272 microcontroller.
3. Learn how to command a RC servo motor.
4. Get a small taste of the powerful vision library, OpenCV, and implement a basic blob search

algorithm.

Exercise 1:

The goal of this first exercise is to setup your ORANGE PI ZERO with needed software and get you
familiar with working in Linux at the “terminal” or “command prompt.”

First you will focus on setting up your ORANGE PI ZERO board’s micro SD card. There is a very nice
version of Linux for the Orange Pi boards call “Armbian.” It may be better to call Armbian a wrapper
instead of a version of Linux because Armbian images can be both Ubuntu based or Debian based. We
are going to use an Ubuntu based version of Armbian mainly because we have the most experience with
that image.

The ORANGE PI ZERO does not have a way to output a HDMI or VGA video signal so it will always be
used in a “headless” format. “Headless” means that an X windows environment will not be used. We
will only be able to work with the ORANGE PI ZERO through a command prompt, or in Linux terms it is
call a “terminal.”

To set up your SD card ask your TA for a USB to SDcard adapter. Everything you need to image the
SD card can be found on your lab PC’s desktop under the “Orange Pi Zero” folder. In the folder you will
find the image along with the program that copies the image to the SD card, Etcher-Portable-1.4.4-
x64.exe. But before you image the SD card, let’s go to the Armbian website to see how you would find
this image file on your own. So go to the website Go to the website https://www.armbian.com/orange-
pi-zero/. There are Armbian images for many different single board computers like the ORANGE PI
ZERO. This website is specifically for the ORANGE PI ZERO. If you scroll down the page you will see two
images “Bionic” and “Stretch.” These are the latest Ubuntu and Debian images. As of Fall 2018, we
have had some trouble with these images to get the WIFI to work nicely and also problems with the I2C
driver. So instead we are going to use a legacy version of Armbian that is still supported, Xenial. Scroll
all the way down to the bottom of the page, and you will find the Xenial image. You do not need to
download this image because it is already located on the Lab PC’s desktop.

https://www.armbian.com/orange-pi-zero/
https://www.armbian.com/orange-pi-zero/

ME461 2 Lab #6

Now to image the SD card you need the application “Etcher.” You do not need to do this because it
is already in the folder on the desktop, but it can be downloaded from the Armbian website by scrolling
to the top of the webpage and clicking on “SD writing tool.” Etcher is a very simple program. First plug
your USB/SD card into the PC’s USB port. Windows will probably assign the name “D:\” to your SD card.
Then run the “Etcher-Portable-1.4.4-x64.exe” application. In the application click “Select Image” and
browse to the desktop and find the image file under the “Orange Pi Zero” folder. Then click the next
button in Etcher to select the SD card’s drive name. Etcher may have already selected the D:\ drive for
you. Make sure to select the drive that IS your SD card. Finally click on the “Flash” button and watch
Etcher copy the image to your SD card and verify that the image was copied correctly.

Once you have your ORANGE PI ZERO’s SD card flashed, plug it into the SD slot of the ORANGE PI
ZERO. Then connect the ORANGE PI ZERO to your green MSP430 break out board. Make sure the USB
port and Ethernet connector are pointing off the break out board. Power the breakout board with 12V
and have your TA show you how to plug the USB virtual COM port cable into the ORANGE PI ZERO. Use
Device Manager to figure out what COM port number was assigned to this Virtual COM cable. Start
“Tera Term” and select Serial, your cable’s COM number, and 115200 Baud. Once you have everything
connected, power on the 12 volt supply. At Tera Term you should see a bunch of debug text showing
the boot state of the ORANGE PI ZERO. Once you see a login prompt, login with “root” and password
“1234” then follow the steps to first change root’s password to whatever you want and then create a
user and its password.

We need to setup your ORANGE PI ZERO so it can wirelessly connect to “Illinois_guest” when you
want to download packages and other web files. In addition connect to the lab room’s wireless router
when you want to transfer files to/from the PC. To setup connecting to “Illinois_guest” you need the
MAC address of your ORANGE PI ZERO. Type “ifconfig.” The MAC address, or also called the physical
address, is a 12 digit hex number. Find and jot down the MAC address for the “wlan0” listing. Then you
need to go to a U of I website to allow this device to connect to Illinois_guest. In Chrome go to
http://go.illinois.edu/IllinoisNetDevices and login with your active directory account. Click on the item
“Add Device”. Fill in the given boxes with your ORANGE PI ZERO’s MAC address and a name you make
up for you ORANGE PI ZERO. In the Notes box you could make a note that this device is for ME461.
Select the terms of use and create.

Connect to Illinois_guest by running the following command “sudo nmtui”. “nmtui” stand for
Network Manager Text User Interface. In nmtui use the arrow keys and enter to select “Activate New
Connection” and then select Illinois_guest. After a little time it should indicate that the ORANGE PI
ZERO is connected. Exit nmtui again using arrow keys and enter.

Check that your ORANGE PI ZERO’s WIFI is connected to outside building web access by typing “ping
www.google.com”. You should see replies if everything is working correctly. Then run these
commands, which will take a bit, at your ORANGE PI ZERO’s terminal:

sudo apt-get update This syncs your ORANGE PI ZERO with the current repository

http://go.illinois.edu/IllinoisNetDevices

ME461 3 Lab #6

sudo apt-get install git build-essential This installs git and C/C++ Compiler

sudo apt-get install libopencv-dev python-opencv This installs OPENCV

Once these install commands are done you have all the needed packages to complete the rest of
this lab. For your final project, if you decide to use the ORANGE PI ZERO, you may need to install other
packages.

Play a bit with Linux

Probably the two most important terminal commands you need to know are “cd” (change directory)
and “ls” (list files). If you type “ls” and then enter, Linux will list the files located in your current
directory. Commands:

 ls Lists files and directories in current directory

 ls –la Lists files and directories and includes size of each file and its save date.

 cd /home/username/<yourdirectory> Changes current directory to
/home/username/<yourdirectory>

 cd By itself takes you back to your home directory. On ORANGE PI ZERO
/home/username

 pwd “Print Working Directory” indicates your current directory

 Here are two websites that give information on the most important Linux terminal commands.
 http://community.linuxmint.com/tutorial/view/100
 http://faculty.ucr.edu/~tgirke/Documents/UNIX/linux_manual.html

 We will be working with Linux “Headless.” “Headless” means not connecting a keyboard, mouse
or monitor to the ORANGE PI ZERO but just communicating and commanding Linux through an RS-232
connection or an Ethernet connection. Have your TA show you how to power and connect everything to
your ORANGE PI ZERO. First use your RS-232 to USB as the headless connection. Open Tera Term and
select the COM number of your FTDI serial cable and set its baud rate to 115200. Then when everything
is cabled, power on your ORANGE PI ZERO. In a few seconds you should see a large number of
messages printing to the terminal. There are boot messages indicating the status of the boot steps. If
errors occur during boot they would be printed here. (Side Note: After Linux has booted you can list off
all these boot messages by typing the command “dmesg” at the terminal after logging in.) After about
20 seconds or so Linux will complete its boot and the login prompt “username@boardname:” should be
printed. Sometimes an additional debug message is printed to the terminal after the login prompt is
displayed. Simply press enter once and the login prompt will reprint. Login with your username and
password.

Now perform the below steps to get you a bit more familiar with Linux and the ORANGE PI ZERO.

http://community.linuxmint.com/tutorial/view/100
http://faculty.ucr.edu/%7Etgirke/Documents/UNIX/linux_manual.html

ME461 4 Lab #6

• Check and Change the Date. If the ORANGE PI ZERO is connected to the internet, instead
of the lab’s local network, it will find the date from a NTP (Network Time Protocol) server.
If you want to view data and/or change it, type the following:

o date (the date is in UTC, not Central time)

o “date –help” and scroll to the top to see the beginning of help

o If the date displayed was wrong, change date by typing sudo date 1001131413, but
change it to today’s date. (Note the format is MMDDhhmmYY.)

• Create a Directory

o mkdir <your netid>

o cd ~/<your netid> Note: ~/ is your home directory /home/username

• Create a simple C file so we can play around with the gcc C compiler

o nano myCfile.c (nano is a simple text editor)

o Write this simple C program:

 #include <stdio.h>

 void main(void) {
 int i = 0;
 int count = 0;
 for (i=0; i<20; i++) {
 printf(“Count = %d\n”,count);
 count++;
 }
 }

o To save your file in nano: Ctrl-O then Enter. To exit nano: Ctrl-X

o ls to see that your file was created.

o gcc –lm myCfile.c –o myCfile

o ./myCfile to run your application.

o Play around with the arrow up and down keys to see you can scroll through your

command history. Also try Tab completion by typing “nano myC<Tab>.<Tab>”.

Also if you type “nano m<Tab><Tab><Tab>” Linux should list all files starting with
“m”.

o Now reedit your myCfile.c file and add some errors to your program. Recompile
your file and notice how gcc lists of the line numbers of your errors.

ME461 5 Lab #6

o To see line numbers displayed at the bottom of nano use the –c option so: nano –c
myCfile.c and notice the line number display and fix your errors.

o If you know “vi” or “vim” you can use those text editors also. I think “nano” is
easier to use because many of its commands are always listed at the bottom.

o To get ready for the next bullet item type the command “sudo ifconfig” (interface
config for the internet connection). Scroll up to the “wlan0” item and find your
ORANGE PI ZERO’s “inet addr”, internet address.

• The Mechatronics lab has a local network that connects all the PCs to a wireless router call
“Mechnight”. Connect to this router using the command “sudo nmtui”. Use your
keyboard’s arrow keys to navigate this application and activate a connection with
“mechnight”. Ask your TA for the password to “mechnight.” Now your PC and can
communicate and transfer files back and forth to the ORANGE PI ZERO

• The other “headless” connection to the ORANGE PI ZERO is through this internet
connection. Use Putty to connect to your ORANGE PI ZERO over the network. To connect
with Putty, open a Command Prompt (cmd) in Windows 10 and type “putty
username@192.168.1.???” where ??? is your ORANGE PI ZERO’s remaining IP address.
(Run sudo ifconfig again to find your IP address.) This then turns the command prompt into
a terminal connected to your ORANGE PI ZERO. This terminal works identical to the RS-
232 terminal connection except that you need to wait until the ORANGE PI ZERO is fully
booted before you try to connect over the internet. The ORANGE PI ZERO needs to launch
a SSH server before you can connect to it.

• From inside this internet terminal, use cd and ls to find the directories and files you created
in the RS-232 terminal. Run the application that you compiled earlier. So with this internet
terminal any computer/tablet/smartphone that is wired or wirelessly connected to the lab
router can connect to your ORANGE PI ZERO

• Now let’s take a quick tour of the Linux running on the ORANGE PI ZERO The distribution
of Linux running on the ORANGE PI ZERO is Ubuntu. Perform these steps to navigate
through the Linux directory:

o Type pwd to see what directory you are currently in.

o cd / will take you to the start of the Linux file system. This is like typing cd c:\ in
Windows.

o ls to list all the files and directories at the start of the Linux file system. The bin and
sbin directories have most of the common Linux commands. cd /bin and then ls
and find the pwd, ls, ping, etc commands

ME461 6 Lab #6

o cd /sbin and then ls and find the ifconfig, shutdown, etc commands

o cd /dev This is where many of the devices connected to the ORANGE PI ZERO’s
processor are listed. For example find ttyS0. This is the serial port for the RS-232
terminal you used previously. Notice there are three i2c serial ports. We are going
to use i2c-1. video0 is the USB camera connected to your ORANGE PI ZERO. Type
lsusb to list all devices plugged into the USB.

o cd /etc and ls This is where most of the boot setup scripts are located. For
example cat profile lists the setup file for your terminal. You can change your
default path for example by editing this file. Please do not change this file though!

o cd /usr and ls This is where most of the installed programs are located. ls /usr/bin
to see a large number of installed programs.

o /sys has kernel related files. /mnt and /media are the normal locations for mount
usb drives or any storage device. /lib stores most of the Linux runtime libraries.
/var is where many Linux programs save program specific data during operation,
like log data and printer queues.

o cd /proc and ls The proc directory is full of virtual files. These are files that the
linux kernel modifies and controls. You can list their contents and find out
information about the system. cat uptime to see the amount of time Linux has
been running. Run the command again to see that it changes. cat a few other
items like cpuinfo or whatever you want.

• Practice copying files to/from Linux from/to Windows PC. First change back to your user ID
directory. Couple ways to do that: Full path cd /home/username/<yourDirectoryName>
or cd ~/<yourDirectoryName> or two commands cd to get back to /home/username and
cd <yourDirectoryName> to change to your directory.

o mkdir testcopying and then cd testcopying

o Now switch to your Windows computer and open a terminal window. Type n: and
then cd n:\me461\Fall17\Lab6. Type dir and you will see the file create_a_file.c.
We want to copy this file down to the ORANGE PI ZERO

o To copy the file to your ORANGE PI ZERO you need to know its ip address again. (If
you do not remember it from the above exercise, back at the Linux prompt type
sudo ifconfig and find its ip address under wlan0. It will be 192.168.1.???.) Then go
back to your Windows command prompt and type “pscp create_a_file.c
username@192.168.1.???:/home/username/<yourDirectoryName>/testcopying/.
” (Don’t forget the “.” Period) This takes a few seconds to perform the copy. It will

ME461 7 Lab #6

also ask you for the Linux password. Now go back to the Linux terminal and list the
contents of your testcopying directory and you should see create_a_file.c there.

o Edit create_a_file.c with nano and you will see that it is a very simple C program
that opens a file named “mydata.m” and creates and writes “M-file” formatted data
file using the fprintf() function.

o Compile create_a_file.c at the Linux terminal by typing gcc create_a_file.c –lm –o
create_a_file (the –lm option links in the math library) and then run the executable
./create_a_file. When finished list the contents of the folder and a new file has
been created mydata.m. Type cat mydata.m and you will notice that a two
dimensional array of data has been written to this file.

• To practice copying files from Linux to Windows go back to your Windows command
prompt and move to the C: drive by typing c: and then change directory to your directory
on the C:\ drive. From inside your directory type the following: “pscp

username@192.168.1.???:/home/username/<yourDirectoryName>/testcopying/mydata.m .” This will copy
mydata.m to your Windows folder. See that the contents of the file are correct by typing
“type mydata.m” at the Windows prompt.

• Only do this section if you need to in the future if you have trouble copying files to/from the
PC using the Ethernet connection. This is a backup method using a USB drive/stick.

o Unfortunately our Linux setup does not mount a USB drive automatically. It does
recognize the USB drive but you need to mount it. Plug in the USB drive your TA
gives you.

o Change directory to the /dev folder. In the /dev folder type ls s*. This will list all
devices that start with s. Most of the time your USB drive will be called “sda” and
its working partition called “sda1”. It could also be called sdb, sdc, etc. Remember
this label.

o Change directory back to /home/username/<yourdirectoryname>. Create a
directory like mkdir USBstick. Then type sync to make sure this new directory is
permanently stored.

o To mount the USB drive for use type (change sda1 to your sd?)

sudo mount /dev/sda1 /home/username/<yourdirectoryname>/USBstick

o Now change directory into USBstick and list all the files in your USB drive. Practice
with the “cp” command copying files to and from your USB drive. Remember to
add sudo to your commands when you what to write something to the disk.

ME461 8 Lab #6

• A cool side note is that each terminal you use to connect to the ORANGE PI ZERO, Tera
Term over serial and multiple Putty sessions over Ethernet can all be used in tandem. So
you could be working with the serial interface and Tera Term while your partner is on
another PC connected to your ORANGE PI ZERO through Putty. Show this to yourself by
creating both a Tera Term session and a Putty session on your PC.

• As our last “Linux play time” exercise, we will mess a bit with python. Python can be
thought of as both a scripting language and a programming language. At your Linux
terminal window and type python and the prompt. This will open a python prompt. Here
you can type in commands similarly as in Matlab. Type in the following commands to get a
very small taste of python.

import numpy as np

A = np.matrix([[4,9,2],[23,5,12],[95,120,23]]) # Creates a matrix.
x = np.matrix([[6],[3],[9]]) # Creates a matrix
(like a column vector).
y = np.matrix([[1,2,3]]) # Creates a matrix
(like a row vector).
b = np.matrix([[4], [7.5], [13]])
A.T # Transpose of A.
A*x # Matrix multiplication of A
and x.
A.I # Inverse of A.
solution = np.linalg.solve(A, b) # Solve the linear equation
system. A*solution = b

You can exit the python command prompt by typing quit() <return>

Had you typed these lines of code into a text file with extension .py, they could be executed
in sequence by typing python <filename> in the Linux terminal.

Exercise 2:

 The goal of this exercise is to develop code for both Linux and the MSP430 to allow the
ORANGE PI ZERO (I2C Master) to communicate data to/from your MSP430F2272 processor (I2C slave)
using the I2C serial port. The MSP430F2272’s USCIB0 can be setup as an I2C serial port and the
ORANGE PI ZERO has an I2C serial port with a given Linux device driver. To get you started you are
given a Linux program that every 200ms issues an I2C write of an 8 bit number to the I2C address 0x25
(your microcontroller’s address will be set to this number). After the write command is complete it
issues an I2C read asking the device at address 0x25 (your microcontroller) for an 8 bit number back.
Both the value transmitted and the value received are printed to the terminal. First, you need to make
sure you have connected the I2C-1 pins of the ORANGE PI ZERO to the I2C pins of the MSP430F2272
and, like all I2C serial ports, both wires need to be pulled to Vcc through a 10Kohm resistor. These
pullup resistors are already solder on the ORANGE PI ZERO board so we do not have to solder them on

ME461 9 Lab #6

our break board. Using the demo board as a guide and using the ORANGE PI ZERO pinout diagram you
can find online by searching for “ORANGE PI ZERO pinout”.

• Solder a wire from the TWI1-SCK pin of the ORANGE PI ZERO to MSP430F2272 pin
P3.2. P3.2 was connected to the DAC so you will need to cut that wire.

• Solder a wire from the TWI1-SDA pin of the ORANGE PI ZERO to MSP430F2272 pin 3.1.
P3.1 was also connected to the DAC so cut that wire.

• Solder a wire from the “+3.3V” 1X5 connector to any Vcc pin on the right of the board.
This will power the MSP430F2272 when only the ORANGE PI ZERO’s power is
connected.

• Solder a push button next to the MSP430F2272. This is a “Reset” button for the
MSP430F2272 that is useful to restart your program when the debugger is not
connected to the MSP430F2272.

At the end of this exercise you are going to be asked to command the position of a RC servo motor. The
steps below explain how to wire for the RC servo motor.

• At the top of your board you will find two sets of three columns labeled OUT, PWR,
GND. First solder a three pin header to the top most pads of one of those three column
sets.

• The GND column is already connected to ground through the traces of the board so you
do not have to connect a wire to that column.

• The PWR column needs to be connected to 5V. Solder a wire from the PWR (power)
column to one of the 5V pins 1X5 connector labeled +5V down in the ORANGE PI ZERO
area.

• The OUT column needs to be connected to a PWM output. Solder a wire from the OUT
column to MSP430F2272 P4.1/TB1. P4.1/TB1 may already be soldered to the 5 pin
header for Lab 5. You do not need to disconnect that wire because nothing is connected
to the 5 pin header.

Now that you are done with the soldering, boot back up your ORANGE PI ZERO and copy and compile
the given Linux program’s code. Steps below:

• From an ORANGE PI ZERO terminal change directory to your
/home/username/<yournetid> directory. In that directory create another directory and
name it “i2c_singlebyte”. mkdir i2c_singlebyte

• On your Windows PC change directory to: cd n:\me461\Fall17\Lab6.

ME461 10 Lab #6

• Copy all the i2c files from this directory to your ORANGE PI ZERO.

“pscp i2c* username@192.168.1.<your_ip>:/home/username/<yournetid>/i2c_singlebyte/.”

• At the ORANGE PI ZERO terminal compile your i2c program

gcc –lm i2c.c i2c_test_byte.c –o single_byte

• You can run the executable if you would like but your MSP4302272 has not been
programmed to receive the i2c data so timeout errors will be printed.

• Before you go onto the next steps view the given source files to understand even better
what the executable is performing. What are the four parameters of the functions
“i2c_write_bytes” and “i2c_read_bytes”?

Switch to creating a program for your MSP430F2272 that will communicate through the I2C serial port
to the ORANGE PI ZERO. Your initial program needs to wait for an 8 bit value from the ORANGE PI
ZERO and then echo that 8 bit value back to the ORANGE PI ZERO. Follow these steps:

• Use the project creator to create a new project and import this project into Code
Composer Studio.

• I would like you to start with a new “starter shell” of code that has a few changes to
help you with the I2C serial port. This new starter shell is located at
N:\me461\Fall17\Lab6\user_msp430i2cshell.c. Open this file and copy its entire
contents. Then open the main C file of your new project and paste the i2c shell contents
over the top of the new project’s main C file contents. (In other words, replace the text
of your new project C-file with the text of user_msp430i2cshell.c.)

• In your main() function’s initialization section set the USCIB0 peripheral’s registers to
setup the USCIB0 as an I2C slave.

o Set P3.1 and P3.2 as USCIB0 pins

o Put USCIB0 into reset and set clock source to SMCLK

o Set USCIB0 to synchronous mode and I2C mode.

o Set the USCIB0’s “Own Address” to 0x25. This is the address your Linux program
will need to communicate with.

o Pull the USCIB0 out of reset.

o Finally enable only the UCB0RXIE interrupt. The I2C receive interrupt.

ME461 11 Lab #6

• Besides printing the I2C received value in the main() function’s while loop, the
remainder of the code you need to develop will be placed in the USCI0TX_ISR interrupt
service routine. Scroll down to the USCI0TX_ISR function. The first 20 or so lines of that
function have not changed. This code is for transmitting the “printf” character strings
through USCIA0 to Tera Term. But below that code you may notice some differences.
With I2C mode enabled there are now two more interrupt sources that cause the
USCI0TX_ISR to be called. Both the I2C TX interrupt and the I2C RX interrupt use the
USCIAB0TX_VECTOR (interrupt function). This is a bit confusing and hence the reason I
wanted to give you a new starter shell. Follow the below steps to develop the I2C
receive and transmit code:

o Initially the UCB0RXIE interrupt is enabled in main(). When the ORANGE PI
ZERO writes its first byte to the MSP430, the UCB0RXIE interrupt source will
cause USCI0TX_ISR to be called. Inside UCB0RXIE’s if statement:

 Read the value received into a global variable, i.e. RXData.

 Copy this value to another global variable to be used to send this
received value back to the ORANGE PI ZERO, i.e. TXData.

 Toggle an LED.

 Set “newprint” to 1 telling the main() function to print this new receive
value. (Since the ORANGE PI ZERO is only sending us a character every
200ms you can print out each value received).

 Last step is to disable the UCB0RXIE interrupt source and enable the
UCB0TXIE interrupt source. (This is part of the protocol we are creating
here. The ORANGE PI ZERO knows not to send any more information
until it receives a byte back from the MSP430).

 This is all that is needed for the receive portion. The code falls out of
the if statement and USCI0TX_ISR is exited.

o When the USCIB0 is ready to transmit, it will signal the UCB0TXIE interrupt.
Since you just enabled that interrupt source before finishing the I2C receive
code, the USCI0TX_ISR function will again be called. This time it will enter the
UCB0TXIE if statement. In this if statement:

 Write the transmit global variable’s value to the USCIB0 transmit buffer.

 Toggle a second LED.

ME461 12 Lab #6

 Get ready for the next time the ORANGE PI ZERO sends another byte
by disabling the UCB0TXIE interrupt source and re-enabling the
UCB0RXIE interrupt source.

o Up in the main() function’s while loop print this value whenever “newprint” is
set to 1.

o That’s it. Now the MSP430 will wait for a byte from the ORANGE PI ZERO, echo
it back and print the value received.

• Use the oscilloscope to watch the output/input of the I2C SDA and SCL lines. Load your
MSP430 with the program you just created and run it. Then in Linux run the single_byte
application, sudo ./single_byte. single_byte should print what it transmitted and what
it received back and your MSP430 should be printing what it received to its USB serial
port.

Now that you have working programs on both and ORANGE PI ZERO and the MSP430 that allow for I2C
communication of one byte between the processors, we will take it one step further and transfer 8
bytes to/from the processors. Use these tips/hints to modify your communication scheme:

• First make a backup of your single byte transfer code of both your ORANGE PI ZERO and
MSP430.

• On the ORANGE PI ZERO:

o Change the variables rx and tx to arrays of 8 unsigned char.

o Now that rx and tx are arrays, C sees them as pointers. When you pass them to
“i2c_write_bytes” or “i2c_read_bytes” you should remove the &.

o With the same timing, every 200ms, send the 8 values of your array to the I2C port.
Then after the write function returns call the i2c_read_bytes function to read 8 bytes
send back from the MSP430.

o With two print lines print all 8 bytes that were sent and all 8 bytes that were received.

o To make the display of RX and TX data a bit more interesting, change the data to
transmitted (maybe add a constant) every new transmission.

o Compile your code, but wait to test until the MSP430 code has been developed.

• On the MSP430F2272:

o Change RXData and TXData to 8 element unsigned chars.

ME461 13 Lab #6

o Change the I2C RX interrupt function so that 8 bytes are received and stored to RXData
before the TX interrupt is enabled. Remember that the RX interrupt is called whenever
1 byte has been received. So 8 interrupt calls will occur to receive the 8 bytes of data.

o Once 8 bytes have been received from the ORANGE PI ZERO, blink an LED and disable
the RX interrupt and enable the TX interrupt. For now just echo back the 8 bytes just
received so assign TXData’s elements to RXData’s elements

o Change the I2C TX interrupt function so that 8 bytes of TXData are transferred back to
the ORANGE PI ZERO program. Again remember that only one byte is transferred
across the I2C serial port per interrupt. So 8 interrupt calls will occur to send the 8
bytes of data.

o Once the 8 bytes have been transmitted blink a LED, print at least four of the bytes
received and disable the TX interrupt and enable the RX interrupt to get the I2C ready
of the next transfer.

o Try out your new programs.

Take the transmission of 8 bytes one step further. Now instead of transferring eight random bytes of
data, use the 8 byte transfer to transfer two long integers (32bits/4bytes). So two long int transferred
from the ORANGE PI ZERO to the MSP430F2272 and then transfer two long int from the MSP430F2272
to the ORANGE PI ZERO Also don’t echo the same data received back to the ORANGE PI ZERO Send
something else back like a sampled ADC value in millivolts and the elapsed time of the microcontroller.
Tips/hints:

• Here is an example of extracting the second byte of a long integer.

Bytetosend = (unsigned char)(mylong>>8);

• To put a long back together (NOTICE where the parenthesis are at)

Newlong = (((long)b3)<<24) + (((long)b2)<<16) + (((long)b1)<<8) + ((long)b0);

Depending on how much time you have, you may want to get started working with the RC servo. In
Exercise 3 you will be asked to command an RC servo to move to different positions depending on the
position of a bright color seen by a USB camera connected to the ORANGE PI ZERO. The RC servo will
be discussed in lecture. You will drive the RC servo with a 50 HZ carrier frequency PWM signal. The RC
servo’s PWM input is connected to P4.1/TB1. To command an RC servo, the PWM duty cycle is varied
between approximately 3% duty cycle to 13% duty cycle.

ME461 14 Lab #6

Exercise 3:

In this exercise you are going to start communicating more meaningful messages from the
ORANGE PI ZERO to the MSP430 to control a RC servo. Eventually, we want to be able control a
RC servo based on the location of a bright color in the view of the USB camera that is connected
to the ORANGE PI ZERO. This is going to require the ORANGE PI ZERO to perform some image
processing and transmit the location of the bright colored paper to the MSP430 over i2c. To do
the image processing, we are going to rely on an open-source computer vision library called
OpenCV. Originally developed by Intel, this library is a powerful tool that gives us access to a
large variety of data types and functions useful for image processing.

Before we start thinking about programming anything for the ORANGE PI ZERO, we need to first
set up the MSP430 to output PWM signals capable of controlling our RC servo.

Controlling a RC servo from the MSP430 means we need to set up Timer B0 to output a PWM
signal with varying duty cycle. We want our PWM signal to have a carrier frequency of 50 Hz
and a varying duty cycle from 3%-13%. This range of duty cycles will command the RC servo to
move to a position between -90o to 90o. (The 3%-13% guideline, which correlates to a pulse
length of .6ms to 3ms, can vary slightly depending on which brand and type of RC servo you are
using.)

• Set up Timer B0’s CCR1 (TB1) compare registers on the MSP430 to output a PWM wave with a
50Hz frequency and a duty cycle that is linked to TB0CCR1’s value.

• Keeping the same communication time period (200 ms) use one of the long integers you are
already transmitting from the ORANGE PI ZERO to change the position of the RC servo motor.
In the ORANGE PI ZERO code, gradually increase (by say 5 or 10) the TBCCR1 value
commanding the RC servo. When you have increased the PWM value to the point where the
RC servo motor has been commanded to approximately 90o, start decrementing the PWM
value until approximately -90o has been reached. Your code should then continue to repeat
this sequence. Show this working to your TA.

This grayed out section is currently not needed with the version of Linux we have installed on
the ORANGE PI ZERO. I am going to leave it here in this lab just in case this issue comes up
again in the future. Please feel free to read but DO NOT perform these steps.

In this next part you will be working with a USB camera connected to the ORANGE PI ZERO and
you will be able to view the camera’s image on the second VGA monitor on the bench. There is
a small issue with the default Linux image we have running on the ORANGE PI ZERO in that after
a number of minutes of inactivity the video stream to the monitor shuts off (screen save mode).
This wouldn’t be an issue if we had a USB keyboard attached to the ORANGE PI ZERO because

ME461 15 Lab #6

we could just hit a key to wake up the screen. Since we prefer not to attach a keyboard, we
need to tell Linux not to turn off the screen. Perform the following steps:

• sudo nano /root/screenNoblank.sh Then add to the file:
TERM=linux
/usr/bin/setterm –blank 0 > /dev/tty1
Ctrl-O to save
Ctrl-X to exit

• sudo chmod +x /root/screenNoblank.sh makes file executable

• sudo crontab –e you may have to select nano as the editor and then scroll to the
bottom of the file and add the line

@reboot sudo sleep 20;sudo /root/screenNoblank.sh
Ctrl-O to save
Ctrl-X to exit

• Now reboot by typing:
sync to make sure everything is saved to disk
sudo shutdown now wait for it to stop sending messages to Tera Term

• Power off and on your ORANGE PI ZERO and wait for it to boot. Then perform this check
to make sure consoleblank is equal to 0.

cat /sys/module/kernel/parameters/consoleblank

Now we are going to start playing with image processing code on the ORANGE PI ZERO. As a
first step, we are going to compile and run some given image processing code that displays an
image to the ORANGE PI ZERO’s monitor.

• On the ORANGE PI ZERO, make a directory in /home/username/<your net id>/ called
“lab6_openCV”. This is where you will put the image processing code we are about to play
with.

• From the windows command line, use the pscp command to copy the file Lab6_student
from n:\me461\fall18\Lab6 to the ORANGE PI ZERO (“pscp
n:\me461\fall18\Lab6\Lab6_student.c username@192.168.1.<your 3-
digits>:/home/username/<yournetid>/lab6_openCV/.”).

• Open a terminal window and cd to the file you just copied from the windows machine. Compile the
code by typing :

ME461 16 Lab #6

“gcc -O2 –lm Lab6_student.c -o Lab6_student `pkg-config --cflags --libs opencv` ”. (Note that the
“ ` ” character is found on the same key as the tilde(~), and is NOT an apostrophe. The reason we
need to use `pkg-config --cflags --libs opencv` when we compile the code is to tell Linux to include
all the OpenCV libraries. If you want to see what libraries are being included, you can just type
pkg-config --cflags --libs opencv at the command prompt and see what is returned.)

• Connect the ORANGE PI ZERO’s RCA video output to the VGA monitor adapter and run the
code you just compiled. The video from your USB camera will appear on the VGA monitor.
The program is taking RGB images from your camera, changing pixels that match closely
“blue jean blue” to green, and displaying the image to the ORANGE PI ZERO’s frame buffer.
Play around viewing different blue objects in the lab. Press any key to stop the
Lab6_student application.

• Use nano to open up the “Lab6_student.c” by typing “nano Lab6_student.c”. Look at the
given code and try to make sense of it. (You can also edit the file on the Windows PC and
copy it down to your ORANGE PI ZERO when you are done.) Note the following:

 We set the width and height of an image capture object to be 120rows X 160columns
pixels and initialize some of the variables we will use to store images captured from the
camera.

 We enter a while loop and will keep on looping until any key is pressed on the keyboard.
This loop is where all the image processing is done. On each iteration, we do the
following:

1) Capture an image from the camera

2) Use two nested for loops to go through every pixel. For each pixel we pass the
red, green, and blue values to the rgb2hsv function, which determines the hue,
saturation, and value for each pixel and stores the values in “h,” “s,” and “v”
variables, respectively. If the hue, saturation, and value of a pixel happens to fit
in a particular range (color blue jean blue), that pixel is changed to green.

3) Display the image to the framebuffer.

By default, the code is looking for pixels that appear blue jean blue or close to it. Modify the
code to look for a different color. To do this, you will need to estimate a range in hue,
saturation, and value that corresponds to your color of choice. (An HSV color-wheel might be
useful for finding suitable values. Note that, in the code HSV values are all in the range of 0-255
so you will have to scale the hue value from 0o to 360o to 0 to 255.) Once you think you have
suitable limits in hue, saturation, and value, go into the code and change it to look for pixels

ME461 17 Lab #6

that fit in this new range. Recompile and rerun the code. You should see that it no longer
targets the same dark-blue pixels as before, and instead targets your color (or close to it). Show
this working to your TA.

Now we are going to start trying to target a bright “neon” color with our OpenCV code.
Estimating HSV ranges without any help from a computer can be difficult to do accurately, so
we are going to enlist a more powerful tool, Matlab. We will analyze an image taken from the
camera to determine precisely the best HSV range to detect the bright color you choose.

• First, we need an image of the bright color. There is a c file in n:\me461\fall18\Lab6\
called bmpCapture.c. Copy this file to your ORANGE PI ZERO and compile with the command:

“ gcc –O2 -lm bmpCapture.c –o bmpCapture `pkg-config --cflags --libs opencv` ”. (Again the “ `
” characters are not apostrophes.) Run the program you just compiled with the command
“./bmpCapture mybmp”. After running, there should be a new .bmp file called
“mybmp.bmp”.

• Transfer the image from your ORANGE PI ZERO to C:\<yourLabDirectory>\ on the
windows machine using pscp from the command prompt. Open the .bmp file to see
how it looks. If the bitmap doesn’t look good for whatever reason take another image
with the same procedure above and recopy it to windows.

• Open Matlab and type ME461_ColorThreshold(‘C:\<yourLabDirectory\mybmp.bmp’) at the
command line. This will open up a user interface designed to find RGB or HSV ranges
based on an image. The program will ask you to select a region of interest in the
image, and then let you click on pixels out of that region. Left click adds pixels and
right click removes pixels. The program will then give you the smallest possible HSV (or
RGB) ranges necessary to capture all the pixels you choose.

• Take the HSV range values you just determined and once again modify the C code in
your ORANGE PI ZERO program to target those pixels.

Now we are going to start calculating the location of the center of area of the bright color, and
using these values to control the RC servo on the MSP430.

• Add code to Lab6_student.c to calculate the total number of bright colored pixels in the
image and the centroid of these pixels (in both x(=columns) and y(=rows). (Note: in your
centroid calculations, make sure never to divide by zero. This will cause runtime errors.)

• To check your center of area calculations, paint some sort of crosshair on the image that
is displayed. (Note, make sure when you are coloring pixels for the cross hair that you

ME461 18 Lab #6

do not write outside the bounds of the 120X160 image. Display the X and Y coordinates
and the number of pixels found. Show it working to your TA.

• Uncomment the line close to the top of your C file “#define I2C”. When uncommented,
this adds the I2C initialization and closing code to your C file. You still need to add
similar code you wrote previously sending the position of the RCservo to the MSP430.
Send the column (x) centroid location and number of pixels information to the MSP430.
Make it so that if the number of bright colored pixels in the image exceeds some
realistic threshold, the RC servo motor is commanded to go to a location based on the x
location of the bright color in the image. (You can develop your C code on the ORANGE

PI ZERO in nano or on your Windows machine and copy the source down to the ORANGE
PI ZERO when you want to compile and try it out.) To compile your code you need to
copy the i2c.c and i2c.h files from your i2c_single_byte directory and then add i2c.c to
the command: “gcc -O2 –lm i2c.c Lab6_student.c -o Lab6_student `pkg-config --cflags --libs opencv` ”
Remember now that you are using the i2c port, you will need to type “sudo” in front of your
application name when you run your application.

• Compile and run your code on the ORANGE PI ZERO. Make the RC servo move by
moving the bright colored paper around in front of the USB camera. What happens
when you take the bright colored paper out of the view of the camera? Show this all
working to your TA.

	ME 461 Laboratory #6
	The Orange Pi Zero, Embedded Linux and I2C communication

