Observers and Observer-Based Controller Design in Discrete Space

Taken from a document written by William Perkins
These notes will walk you through a control design for a plant with the discrete state space model

$$
x_{k+1}=A_{d} x_{k}+B_{d} u_{k} ; \quad y_{k}=C x_{k} ; \quad x_{k}(0)=x_{0}
$$

A. Observer

Problem: $\mathrm{A}_{\mathrm{d}}, \mathrm{B}_{\mathrm{d}}, \mathrm{C}$ known, y and u measured (observed), $x 0$ unknown. Find estimate $\hat{X}_{k}(t)$ of $x_{k}(t)$ such that $x_{k}(t)-\hat{x}_{k}(t) \rightarrow 0$ "quickly" at $t \rightarrow \infty$.

Solution: Full-order Observer:

Try the following dynamic system as an observer.

$$
\begin{aligned}
& \hat{x}_{k+1}=A_{d} \hat{x}_{k}+B_{d} u_{k}+L\left(y_{k}-\hat{y}_{k}\right), \\
& \hat{y}_{k}=C \hat{x}_{k}
\end{aligned}
$$

where L is an observer gain matrix, to be chosen by the designer.
Does it work? Let $\tilde{X}_{k}=x_{k}-\hat{x}_{k}$. Then

$$
\begin{aligned}
& \tilde{x}_{k+1}=x_{k+1}-\hat{x}_{k+1} \\
& \tilde{x}_{k+1}=A_{d} x_{k}+B_{d} u_{k}-A_{d} \hat{x}_{k}-B_{d} u_{k}-L\left(C x_{k}-C \hat{x}_{k}\right) \\
& \tilde{x}_{k+1}=A_{d}\left(x_{k}-\hat{x}_{k}\right)-L C\left(x_{k}-\hat{x}_{k}\right)=\left(A_{d}-L C\right) \tilde{x}_{k}
\end{aligned}
$$

So $\tilde{X}_{k}=0$ is an equilibrium state of the observer. The dynamic response of observers depends on the eigenvalues of $\left(A_{d}-L C\right)$. The eigenvalues of $\left(A_{d}-L C\right)$ are the same as those of

$$
\left(A_{d}-L C\right)^{T}=\left(A_{d}^{T}-C^{T} L^{T}\right)
$$

Eigenvalues can be place arbitrarily if and only if $\left(A_{d}^{T}, C^{T}\right)$ is controllable:

$$
S=\left[C^{T}\left|A_{d}^{T} C^{T}\right| \ldots \mid\left(A_{d}^{T}\right)^{n-1} C^{T}\right]
$$

The rank of S is equal to the rank of its transpose, which is denoted

$$
O=\left[\begin{array}{c}
C \\
C A_{d} \\
\vdots \\
C A_{d}^{n-1}
\end{array}\right]
$$

Thus the observer eigenvalues can be placed arbitrarily by selection of the observer gain matrix L if and only if the rank of O is n. In this case the state space model is called observable.
B. Controller Design: Combined Observer and Observer Feedback

$$
u_{k}=-K \hat{x}_{k}
$$

The observer error is

$$
\tilde{x}_{k+1}=\left(A_{d}-L C\right) \tilde{x}_{k}
$$

And hence the control looks like a perturbation of full state feedback:

$$
\begin{aligned}
& u_{k}=-K \hat{x}_{k}=-K x_{k}+K \tilde{x}_{k} \\
& {\left[\begin{array}{c}
x_{k+1} \\
\tilde{x}_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
A_{d}-B_{d} K & B_{d} K \\
0 & A_{d}-L C
\end{array}\right]\left[\begin{array}{l}
x_{k} \\
\tilde{x}_{k}
\end{array}\right]=A_{c l}\left[\begin{array}{l}
x_{k} \\
\tilde{x}_{k}
\end{array}\right]}
\end{aligned}
$$

The eigenvalues of $A_{c l}$ equal the eigenvalues of $\left(A_{d}-B_{d} K\right)$ plus the eigenvalues of $\left(A_{d}-L C\right)$.

Separation!

For implementation (or simulation), use X_{k} and \hat{X}_{k} :

$$
\begin{aligned}
& x_{k+1}=A_{d} x_{k}+B_{d} u_{k}, \quad y_{k}=C x_{k} \\
& \hat{x}_{k+1}=A_{d} \hat{x}_{k}+B_{d} u_{k}+L\left(y_{k}-C \hat{x}_{k}\right) \\
& u=-K \hat{x}_{k}
\end{aligned}
$$

