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SE420 Laboratory Assignment 10 
Control of the Furuta Pendulum Using a Full Order Observer 

 

Goals for this Lab Assignment: 

1. Implement a full order observer to estimate the velocity states of the Furuta pendulum 

Matlab Functions Used: 

• Place. 

Prelab: 

 Read through the entire lab assignment. 

Controller Design and Simulation (Must be Done with your Lab Partner): 
 You will design a full order observer to estimate the velocity states of the Furuta pendulum.  Using this observer 

along with the controller designed in Lab 9, simulate your controller and observer with the given non-linear model of the 

Furuta pendulum.  You must complete this design and demonstrate it to your TA before proceeding to the implementation 

exercise. 

This lab is designed to give you an introduction to designing and implementing an observer to estimate the 

unmeasured states of your control system.  The Furuta pendulum experiment only has two measured states θ1 and θ2.  So 

instead of using our velocity approximations from the previous labs, you will design a full order observer to estimate the 

velocities given the linear equations of motion for the Furuta about its balancing point.  Again the only design specification 

is to stabilize the Furuta pendulum in the inverted position.  You can use the same full state feedback controller that you 

designed in Lab 9. 

 The system equations remain the same as in Lab 9 with the exception of C, which now is 

 

indicating that only θ1 and θ2 are measured.  Using this along with your discrete A and B matrices from Lab 9, use pole-

placement to design a full order observer with poles much faster then the closed loop poles of (A-B*K).   You will find your 

observer works best if all the poles are placed to be faster than 0.5 in the z-domain. 

 The simulation for this experiment should build off the one you developed for Lab 9 and to speed things up for this 

lab is given to you in the link below.  The simplest way to implement an observer in Simulink is to use a Discrete State-

Space block.  The block should be set up such that 

Aobs= [Ad-L*C] 

Bobs= [Bd L] 

Cobs= 4x4 Identity matrix (Don’t get confused with this C.  This is just telling the Discrete State-

Space block to output all four of the estimated states.  This is a different C then the one you 

used to design the observer L gain). 

Dobs= 4x3 zeros matrix (to match the dimensions of Bobs and Cobs) 

 The three inputs to this state space block are the saturated control effort, u, δx1, and δx3.  The order of these three 

inputs is defined by the order of B and L in Bobs.  Since a state space block in Simulink can only have one input, those two 

signals will have to be multiplexed into one signal. Note- Mux is an abbreviation for a multiplexer.  The Mux block is found 
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in the Signal Routing section of the Simulink library.  The output of the state space block is the estimate of the four delta 

states of the linearized system.  u is then calculated by multiplying –K by these state estimates.  These are the same K gains 

you found in Lab 9.  The Simulink model can be found at http://coecsl.ece.illinois.edu/se420/FurutaObserver.zip and is shown 

in Figure 1.  Unzip this file in a folder and change Matlab’s current directory to that folder.  Your main job here is the find 

the correct L value that creates an observer that is able to balance the Furuta’s pendulum.  We will consider your simulation 

finished when the Furuta simulation can withstand of Pulse Disturbance of amplitude 1.5.  Note that this Simulink model of 

the Furuta Pendulum already has the parameters that were given in Lab 9.     

 
Figure 1: Simulink Model implementing Furuta Observer 

 

Laboratory Exercise 

 Implement the observer and full state feedback controller on the F28379D.  Use Lab 9’s code as a starting point 

because you will be asked to plot some of the previous states in real-time.  Actually, you will need to keep almost all of the 

lab 9 code.  You will add the observer equations and then just change the balance control calculation u = -K*xhat.  Remember 

that the state equations you need to implement in your control code are: 
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which we are going to implement as 

𝛿𝛿𝑥𝑥�𝑘𝑘+1 = 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜𝛿𝛿𝑥𝑥�𝑘𝑘 + 𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜 �
𝑢𝑢𝑘𝑘
𝑦𝑦𝑘𝑘�   where   𝑢𝑢𝑘𝑘 = −𝐾𝐾𝐾𝐾𝑥𝑥�𝑘𝑘   and   𝑦𝑦𝑘𝑘 = �𝜃𝜃1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜃𝜃2
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Also leave the equations that you used to approximated velocity in Lab 9 in your code.  You will use these approximations 

as the “actual” velocities to compare to your observed velocity states. 

 To help you enter your observer matrices in your C code we have written a small M-file, matrixtoCformat, to 

format the data into an array format and then you can cut and paste the arrays into your code.  Unfortunately there is no 

matrix multiplication built into the C language.  There are libraries you can find but that will take more time understanding 

the library then typing out the equations.  Plus typing out the equations is a better educational exercise so you understand 

the complexity of the observer equations.  Below is part of the first line of code you need to type to perform the observer 

equations.   Also don’t forget to save the past states before you exit the Timer ISR. Also make sure to saturate uk between   

0

operating pointSaturation

Pulse Disturbance Generator

Mux

Tau1

Tau2

q1

dq1

q2

dq2

Furuta Pendulum Model
Furuta Animation

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete State-Space

-Kd* u

Control Effort
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-10 and 10 torque command units.  The uk applied to the observer equations has to be the same as what is applied to the 

real system and the real system is saturated at +/- 10. 

   

uk = ?;  // Keep in mind here that setpt is already in x1hK1 because it entered at y1k. 

ukunsat = uk; 

//saturate uk +/- 10; 

x1hK1 = Aobs[0][0]*x1hK+Aobs[0][1]*x2hK + ? + ? + Bobs[0][0]*uk + Bobs[0][1]*(th1-setpt) + Bobs[0][2]*th2mod; 

x2hK1 = ?; 

x3hK1 = ?; 

x4hK1 = ?; 

//save old states x1hK, x2hK, x3hK, x4hK. 

//All this before your swing-up if statements  !! Make sure to use ukunsat in the two uk checks of swing-up algorithm 

 

 

Lab Check Off: 

1. Demo your working Simulink simulation using the non-linear Furuta model. 

2. Demo your working full order observer controller. 

3. Demo a plot of x4 estimated verses x4 actual (lab 9’s approximation of velocity).  Notice the convergence of the 

estimated state when a tap is applied to the link.  When plotting here you do not have to plot the simulation.  Just 

the two calculated velocities.   
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