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SE420 Laboratory Assignment #6 

PI Motor Speed Control 
 

Goals for this Lab Assignment: 

1. Design a PI controller to regulate the speed of the DC motor with attached flywheel. 

a. Simulate the motor’s dynamics and design a PI controller to meet the given specifications. 

b. In the lab, implement the PI control on the actual system. 

2. Investigate integral windup. 

3. Identify the friction in the motor and implement a method to compensate for the friction. 

Library Functions Used: 

readEnc1, setEPWM3A 

Matlab Functions Used: 

Simulink Plotting System Feedback 

Prelab:   

        Read the entire lab so you understand what is involved for this lab assignment.  

Simulation (Must be Done with your Lab Partner):  

1. You will implement a proportional plus integral (PI) controller to regulate the speed of the DC motor with added 

fly wheel.   Unfortunately, with this speed control setup you cannot easily design a controller for this system 

using linear discrete control techniques like root locus or bode design.  This is mainly due to the control effort 

saturation in the system but static friction also plays a role.  The large amount of controller saturation is caused 

by the fact that we would like to spin the motor at higher radian per second speeds of 50 to 150 rad/s.  If we 

could spin the motor at slow speeds like a few rad/s then the linear techniques would work better and give us a 

ball park range of what the Kp and Ki should be.  To think about this slow speed issue, note that the encoder 

resolution of the motor plus optical encoder is 4000 counts per one revolution so 2*pi/4000 radians or 0.00157 

radians/count.  When reading the optical encoder sensor there is no way to read a fraction of a count.  You can 

only read, for example, 3 counts then 7 counts then 11 counts, etc.  So the slowest speed you can measure when 

sampling every 0.001 seconds would be if only one count changed, for example, from count 12 to count 13.  If 

that happens the speed would be 1count/.001seconds or 0.00157radians/0.001, 1.57 radians/second.  The next 

speed we could measure would be 2 counts or 3.14 radians/second.  So you can imagine it would be difficult to 

control the motor to spin at a rate of 7 radian/second for example.  There are some things you could do if you 

perform some filtering, but even then, it is difficult to spin this motor at slow speeds.     

For this lab, you will use a Simulink simulation of the identified motor transfer function plus controller 

saturation to tune this controller ‘by hand’, iteratively tuning the Kp and Ki gains and checking the output of 

your model.    
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Use Figure 2 as a guide to create a SIMULINK model, and use the values of c1 and c2 you identified, sampling 

every 1ms, in the previous lab for the dynamics of the motor.  Using this diagram, design a controller with the 

following specifications: 

a. Sample rate 1KHz. 

b. Minimal overshoot (1% or less).  

c. Rise time greater than 200 ms. but less than 300 ms. 

d. Limit your gains to values less than 1.0. 

e. The reference signal should be a square wave with amplitude 100 rad/s and a period of 4 seconds.  This will 

command the motor to spin first at 100 rad/s for 2 seconds and then -100 rad/s for 2 seconds repeatedly. 

f. Saturate your control signal with a saturation block so that it stays in the range –10 to +10.  The DSP PWM 

output signal has the range limitation of –10 to +10. 

g. Plot all your response data using Data Inspector. 

 
Figure 2:  Simulink Block Diagram for PI control of DC Motor 

 

Laboratory Exercise 

 Today’s lab includes two exercises.  The first exercise is to implement the PI controller you just simulated.  You 

will hand tune the PI controller and update the speed controller’s set point on the fly.  In the second exercise we ask you to 

implement a method of friction compensation for the DC motor.  First you will be asked to identify the friction in DC motor.  

Then with those friction values you will implement a compensator to adjust for that friction.   

In previous labs we used the serialreadSPIRAM function to upload save data to Matlab.  In this lab you will be 

shown another way to do this.  Simulink will be used to plot and save data in real-time and Code Composer Studio’s 

Expressions Window will be used to change or tune controller parameters.   

Exercise #1 

1. Implement the PI control on the DSP/DC-Motor system.  Your code should implement the following 

operations/specifications:   

a. Controller’s sample period = 0.001 seconds, so set CPUTimer2 to be called every 1ms and write all your 

controller code in CPUTimer2’s ISR function. 

b. Read the motor’s encoder position feedback. 

c. Compute motor’s velocity from the encoder feedback (encoder channel 1). 
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d. In code, create a set point that steps between 100 rad/s and –100 rad/s every 2 seconds. 

e. Calculate control effort. 

f. Output control effort to EPWM3A. 

g. Transfer your angular velocity, control effort and reference over serial port to Simulink for plotting.  

Simulink will plot your data in real-time allowing for real-time tuning of your control gains.  See how to 

do this in the below steps.       

2. At first get your controller code working, controlling the speed of the motor.  Use the Code Composer Studio’s 

watch expression window to see how fast the motor is spinning.  Don’t worry about transferring the data yet to 

Simulink.  Use the Kp and Ki gains you came up with in simulation.  When working, your motor should spin for 2 

seconds in the positive direction close to 100 rad/s and then the next 2 seconds at -100 rad/s. 

3. Now transfer this speed response in real-time to Simulink.  Most of the code you need to transfer data from your 

DSP program up to Simulink has been given to you both in the DSP source code and at the Simulink end.  Your job 

will be to make a few changes to up load the data you are interested in.  Find, toward the top of your main C-file, 

the float variables SIMU_value1_32bit, SIMU_value2_32bit, SIMU_value3_16bit and SIMU_value4_16bit.  These 

are the variables that are automatically sent to Simulink.  You will assign these variables to the values you want to 

see plotting in real-time in Simulink.   

Behind the scenes the above four floating point values are assigned to the integers 

SIMU_Var1_toSIMU_32bit, SIMU_Var2_toSIMU_32bit, SIMU_Var1_toSIMU_16bit and 

SIMU_Var2_toSIMU_16bit.  When Simulink requests data from the DSP these four integer variables are sent.  Two 

32bit integers and two 16bit integers.  To upload float values the given code needs to scale the values by a factor 

and then remember to scale it back down on Simulink’s end.  The two 32bit integers are scaled by 10000 giving four 

decimal places of accuracy and the two 16bit integers are scaled by 1000.  Note those two scales when you open the 

given Simulink file below.  Remember that the range of a 32bit integer is -2147483648 to 2147483647 and the range 

of a 16bit integer is -32768 to 32767.   

Add the following four assignments at the end of your CPUTimer2’s ISR so that: 

SIMU_value1_32bit  = your calculated velocity 

SIMU_value2_32bit  = your reference/desired velocity 

SIMU_value3_16bit  = your control effort value  

SIMU_value4_16bit  = 0 unused.   

That is all you need to add to your code to send those four items to Simulink.  If you are interested in the backend 

code that does the serial port transfer to Simulink, you can look at the function RXBINT_recv_ready in the file 

F28377sSerial.c.  RXBINT_recv_ready is the interrupt function for serial port B which is called each time a character 

is sent from Simulink to the F28377S.   

Now switch to Simulink.  In Matlab make your Code Composer Studio project’s “matlab” directory the current 

directory.  Run the Simulink file simulink5ms_plotAndGains.slx by typing its name without the .slx extension.  The 

left half of the Simulink file is for plotting your four variables and the right half is for downloading values from 

Simulink.  In this lab we are going to only use the four plotting variables.  If you would like to play with the 

downloading capability talk to your instructor.  So before running the Simulink file check the appropriate gains.  For 

the two 32bit integers make sure they are 1/10000.  For the 16bit integer change the gains to 1/1000.  One last step 
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is to change the COM port to the COM of your LaunchPad.  Ask you TA how to set this up as it is a bit hard to 

explain the procedure.  Then you are ready to start the real-time plotting.  Start your DSP code and get the motor 

stepping back and forth.  Then start the Simulink file.  After it builds its real-time application, it will start sending 

your data connected to “Out” ports to Data Inspector.  Open Data Inspector and make a plot with the desired step 

input speed reference and the actual motor speed.  Also in another subplot plot the controller effort u.  Notice that 

your step response looks similar to your simulation run but is a bit slower getting to steady state.  You are going to 

hand tune your control gains in part 5 to make your actual controller meet the simulation specifications.  NOTE:  

When you want to change your code in Code Composer Studio, make sure to stop the Simulink plotting by clicking 

the stop button.  Simulink gets confused when the DSP is halted since no data is being sent back over the serial port.  

So try to remember to stop Simulink plotting in between debugging your code.   

4. Investigate the issue of integral windup.  Modify your code to have the speed reference remain constant at 100 rad/s.  

Also make sure to watch your integral term Ik in a CCS watch expression.  Once your code is running, hold the 

motor so it does not spin.  What happens when you let go of the motor?  This is integral windup.  Implement a way 

of solving this problem.  When you are finished fixing this issue show your TA then change the code back to having 

your reference step back and forth between 100 rad/s and -100 rad/s. 

5. As a final step, you will need to hand-tune your Kp and Ki gains to make your actual controller meet the simulation 

design specifications and match the simulation response as best you can.  For this we are going to copy your 

simulation into the real-time plotting Simulink file and perform the discrete simulation at the same time we are 

uploading actual data from the DC-motor.  Perform the following steps in your real-time plotting Simulink file: 

a. Copy your entire simulation blocks into the real-time plotting block diagram. 

b. Change the Simulation properties so that the sample rate is 0.001. 

c. If need add more “Out” ports so you can create a plot in Data Inspector that plots on the same plot Actual 

Velocity, Simulated Velocity and Actual Speed Reference. 

d. Get rid of the Signal Generator that made the simulation square wave and replace it with the actual reference 

value.  But note that you need to place a “Rate Transition” block (found in the Signal Attributes library) on 

the actual reference signal saying that the output sample time of the rate transition is 0.001 seconds.  This 

is needed since the simulation is running at 0.001 and the real-time plotting is occurring at 0.005.   

e. Also place a “Rate Transition” block on the Simulated Velocity signal before entering its “Out” port.  Here 

the rate transition sample time output is 0.005 since the simulation is running at 0.001 and the plotting at 

0.005.   

Now tune your Kp and Ki gains from the Expressions Window in Code Composer Studio.  Tune Kp and Ki so that 

the actual output matches the simulation output.  Then when you think you have a good response show it to your 

TA and record these Kp and Ki gains along with changing your C file so these values are the default Kp and Ki 

gains.     

Exercise #2 

 In this exercise you are going to implement a friction compensation algorithm to reduce the effects of friction on 

your system.  Your first task will be to identify the friction acting on the motor.  To accomplish this you will produce a plot 

of steady state control effort vs. motor velocity (rad/s).  Your control law has the equation ∫+= )(*)(* teKiteKpu
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.  At steady state, e(t) goes to zero leaving the PI controller outputting the control effort needed to overcome the friction in 

the motor.  Using this fact, we can command the motor to different speeds and record the control effort needed to hold the 

motor at that speed.   Then by making a plot of your data, you can determine both the viscous and coulomb friction of the 

motor in both the positive and negative directions.  You should be able to do steps 2-6 in MATLAB without changing your 

C-code. 

1. Record the steady state control effort at the following speeds: -150, -100, -50, -30, -20, -10, -5, 5, 10, 20, 30, 50, 

100, 150 rad/s. 

2. Produce a plot of control effort vs. speed. 

3. Find the two y-intercepts.  These are your values for positive and negative coulomb friction.  We will label these 

values Cpos and Cneg (note Cneg will be a negative value).   

4. Find the slope of both the positive section and the negative section of the plot.  These are your values for positive 

and negative viscous friction.  We will label these values Vpos and Vneg (note Vneg will be a positive value). 

5. With these identified parameters add the following friction compensation algorithm to you PI control code: 
if (motorvel > 0.0) { 

u = u + Vpos*motorvel + Cpos; 

}  

else { 

 u = u + Vneg*motorvel + Cneg; 

} 

6. As a starting point use 100% of the values identified for Vpos, Vneg, Cpos, and Cneg.   

7. Make sure to create the variables Vpos, Vneg, Cpos and Cneg and set them to the values you found because you 

will be tuning them in a few steps.     

8. Also for the testing phase turn off the PI control (set Kp=0 and Ki=0) and just output the value from the friction 

compensator. 

9. Your goal will be to tune the friction coefficients so that when you manually spin the flywheel it takes a long time 

for it to die out.  Tune both the positive and negative coefficients so that when you by hand give a positive or negative 

input spin the motor does not stop spinning for at least 20 seconds.  After you find the tuned friction values make 

sure to record them somewhere for your keeping and set these variables in your source code to their tuned values. 

10. Now with a tuned friction compensator add back in the PI controller but with an I-gain of zero.  How does a P-only 

controller perform with added friction compensation 

 

 

Lab Check Off: 

1. Show your PI simulation 

2. Show your implemented PI controller with real-time step response plot.  Explain and show what integral windup is 

and your method of solving the problem.  

3. Produce a plot of the friction ID curves (control effort versus velocity). 

4. Demonstrate your code with just your friction compensation working (no PI control). 

5. Demonstrate a P control with added friction compensation. 
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