

EXAS

www.ti.com

Figure 5-27. Analog Subsystem Block Diagram (337-Ball ZWT)

Analog-to-Digital Converter (ADC)

The analog-to-digital converter module described in this chapter is a Type 4 ADC. See the *TMS320C28xx*, *28xxx DSP Peripheral Reference Guide* (SPRU566) for a list of all devices with modules of the same type, to determine the differences between the types, and for a list of device-specific differences within a type.

Торіс		Page
11.1	Introduction	1554
11.2	ADC Features	1554
11.3	ADC Block Diagram	1555
11.4	ADC Configurability	1555
11.5	SOC Principle of Operation	1559
11.6	SOC Configuration Examples	1562
11.7	ADC Conversion Priority	1564
11.8	Burst Mode	1567
11.9	EOC and Interrupt Operation	1569
11.10	Post-Processing Blocks	1 570
11.11	Opens/Shorts Detection Circuit (OSDETECT)	1573
11.12	Power-Up Sequence	1574
11.13	ADC Calibration	1575
11.14	ADC Timings	1576
11.15	Additional Information	1582
11.16	ADC Registers	1591

11.1 Introduction

The ADC module is a successive approximation (SAR) style ADC with selectable resolution of either 16 bits or 12 bits. The ADC is composed of a core and a wrapper. The core is composed of the analog circuits which include the channel select MUX, the sample-and-hold (S/H) circuit, the successive approximation circuits, voltage reference circuits, and other analog support circuits. The wrapper is composed of the digital circuits that configure and control the ADC. These circuits include the logic for programmable conversions, result registers, interfaces to analog circuits, interfaces to the peripheral buses, post-processing circuits, and interfaces to other on-chip modules.

Each ADC module consists of a single sample-and-hold (s/h) circuit. The ADC module is designed to be duplicated multiple times on the same chip, allowing simultaneous sampling or independent operation of multiple ADCs. The ADC wrapper is start-of-conversion (SOC) based (see Section 11.5).

11.2 ADC Features

Each ADC has the following features:

- Selectable resolution of 12 bits or 16 bits
- · Ratiometric external reference set by VREFHI and VREFLO pins
- Differential signal conversions (16-bit mode only)
- Single-ended signal conversions (12-bit mode only)
- Input multiplexer with up to 16 channels (single-ended) or 8 channels (differential)
- 16 configurable SOCs
- 16 individually addressable result registers
- Multiple trigger sources
 - S/W software immediate start
 - All ePWMs ADCSOC A or B
 - GPIO XINT2
 - CPU Timers 0/1/2 (from each C28x core present)
 - ADCINT1/2
- Four flexible PIE interrupts
- Burst mode
- Four post-processing blocks, each with:
 - Saturating offset calibration
 - Error from setpoint calculation
 - High, low, and zero-crossing compare, with interrupt and ePWM trip capability
 - Trigger-to-sample delay capture
 - **NOTE:** Not every channel may be pinned out from all ADCs. Check the datasheet for your device to determine which channels are available.

11.3 ADC Block Diagram

The block diagram for the ADC core and ADC wrapper are presented in Figure 11-1.

Figure 11-1. ADC Module Block Diagram

11.4 ADC Configurability

Some ADC configurations are individually controlled by the SOCs, while others are globally controlled per ADC module. Table 11-1 summarizes the basic ADC options and their level of configurability. The subsequent sections discuss these configurations.

Table 11-1.	ADC Op	tions and	Configuration	Levels
-------------	--------	-----------	---------------	--------

Configurability
Per module ⁽¹⁾
Per module ⁽¹⁾
Per module
Not configurable (external reference only)
Per SOC ⁽¹⁾
Per SOC
Per SOC ⁽¹⁾
Per module (early or late)
Per module ⁽¹⁾

⁽¹⁾ Writing these values differently to different ADC modules could cause the ADCs to operate asynchronously. See Section 11.15.1 for guidance on when the ADCs are operating synchronously or asynchronously.

ADC Block Diagram

11.4.1 Clock Configuration

The base ADC clock is provided directly by the system clock (SYSCLK). This clock is used to generate the ADC acquisition window. The register ADCCTL2 has a PRESCALE field which determines the ADCCLK. The ADCCLK is used to clock the converter.

In 16-bit mode, the core requires approximately 29.5 ADCCLK cycles to process a voltage into a conversion result, while in 12-bit mode, this process requires approximately 10.5 ADCCLK cycles. The choice of resolution will also determine the necessary duration of the acquisition window, see Section 11.15.2.

NOTE: To determine an appropriate value for ADCCTL2.PRESCALE, consult the datasheet of your device to determine the maximum SYSCLK and ADCCLK frequency.

11.4.2 Resolution

The resolution of the ADC determines how finely the analog range is quantized into digital values. This ADC supports a configurable resolution of 16 bits or 12 bits.

The resolution should be configured by using either the AdcSetMode() or ADC_setMode() functions, depending on the header files used, provided in C2000ware in F2837xD_Adc.c. These functions ensure that the correct trim is loaded into the ADC trim registers and must be called at least once after a device reset. Do not configure the resolution by directly writing to the ADCCTL2 register.

The resolution can be changed at any time when the ADC is idle (no active or pending SOCs). No wait time is necessary after changing the resolution before conversions can be initiated. If SOCs are active or pending when the resolution is changed, those SOCs may produce incorrect conversion results.

11.4.3 Voltage Reference

11.4.3.1 External Reference Mode

Each ADC has a VREFHI input and a VREFLO input. In external reference mode these pins are used as a ratiometric reference to determine the ADC conversion input range.

See Section 11.15.4 for information on how to supply the reference voltage.

NOTES:

- On devices with no external VREFLO signals, VREFLO has been internally connected to the device analog ground, VSSA.
- Consult the datasheet for your device to determine the allowable voltage range for VREFHI and VREFLO.
- The external reference mode requires an external capacitor on the VREFHI pin. Consult the device datasheet for the specific value required.

11.4.4 Signal Mode

The ADC supports two signal modes: single-ended and differential.

In single-ended mode, the input voltage to the converter is sampled through a single pin (ADCINx), referenced to VREFLO.

In differential signaling mode, the input voltage to the converter is sampled through a pair of input pins, one of which is the positive input (ADCINxP) and the other is the negative input (ADCINxN). The actual input voltage is the difference between the two (ADCINxP – ADCINxN).

NOTES:

- In 16-bit differential signaling mode, VREFLO must be connected to VSSA.
- In differential signal mode, the common mode voltage is V_{CM} = (ADCINxP + ADCINxN)/2 The datasheet for a particular device will place some requirements on how close this voltage needs to

be to (VREFHI + VREFLO)/2

Note: The above condition is not met by connecting the negative input to VSSA or VREFLO.

• Differential signaling mode is advantageous because noise encountered on both inputs will be largely cancelled. The effect can be maximized by routing the positive and negative traces for the same differential input as close together as possible and keeping them symmetrical with respect to the signal reference.

The signal mode should be configured by using either the AdcSetMode() or ADC_setMode() function provided in C2000ware in F2837xD_Adc.c. These functions ensure that the correct trim is loaded into the ADC trim registers. These functions must be called at least once after a device reset. The signal mode should not be configured by writing to the ADCCTL2 register directly.

11.4.5 Expected Conversion Results

Based on a given analog input voltage, the ideal expected digital conversion is given by the tables below. Fractional values are truncated.

	Analog Input	Digital Result		
Single-Ended	when ADCINy ≤ VREFLO	ADCRESULTx = 0		
	when VREFLO < ADCINy < VREFHI	$ADCRESULTx = 4096 \left(\frac{ADCINy - VREFLO}{VREFHI - VREFLO} \right)$		
	when ADCINy ≥ VREFHI	ADCRESULTx = 4095		
Differential	Invalid Mode	Invalid Mode		

Table 11-2. Analog to 12-bit Digital Formulas

Table 11-3. Analog to 16-bit Digital Formulas

Analog Input		Digital Result		
Single-Ended	Invalid Mode	Invalid Mode		
Differential when ADCINyP - ADCINyN ≤ -VREFHI		ADCRESULTx = 0		
	when -VREFHI < ADCINyP - ADCINyN ≤ VREFHI	$ADCRESULTx = 65536 \left(\frac{ADCINyP - ADCINyN + VREFHI}{2 VREFHI} \right)$		
	when ADCINyP - ADCINyN ≥ VREFHI	ADCRESULTx = 65535		

11.4.6 Interpreting Conversion Results

Based on a given ADC conversion result, the ideal corresponding analog input is given by the following tables. This corresponds to the center of the possible range of analog voltages that could have produced this conversion result.

	Digital Value	Analog Equivalent
Single-Ended	when ADCRESULTy = 0	ADCINx ≤ VREFLO
ADCINx = (VREFHI - VREFLO)		ADCINx = (VREFHI - VREFLO)
	when 0 < ADCRESULTy < 4095	$\left(\frac{\text{ADCRESULTy}}{4096}\right)$ + VREFLO
	when ADCRESULTy = 4095	ADCINx ≥ VREFHI
Differential	Invalid Mode	Invalid Mode

ADC Configurability

 Table 11-5.
 16-Bit Digital-to-Analog Formulas

	Digital Value	Analog Equivalent		
Single-Ended	Invalid Mode	Invalid Mode		
Differential	when ADCRESULTy = 0	ADCINxP - ADCINxN ≤ -VREFHI		
	when 0 < ADCRESULTy < 65535	ADCINXP - ADCINXN = VREFHI $\left(\frac{2 \text{ ADCRESULTy}}{65536} - 1\right)$		
	when ADCRESULTy = 65535	ADCINxP - ADCINxN ≥ VREFHI		

11.5 SOC Principle of Operation

The ADC triggering and conversion sequencing is accomplished through configurable start-of-conversions (SOCs). Each SOC is a configuration set defining the single conversion of a single channel. In that set there are three configurations: the trigger source that starts the conversion, the channel to convert, and the acquisition (sample) window duration. Upon receiving the trigger configured for a SOC, the wrapper will ensure that the specified channel is captured using the specified acquisition window duration.

Multiple SOCs can be configured for the same trigger, channel, and/or acquisition window as desired. Configuring multiple SOCs to use the same trigger will allow the trigger to generate a sequence of conversions. Configuring multiple SOCs to use the same trigger and channel will allow for oversampling.

Figure 11-2. SOC Block Diagram

11.5.1 SOC Configuration

Each SOC has its own configuration register, ADCSOCxCTL. Within this register, SOCx can be configured for trigger source, channel to convert, and acquisition (sample) window duration.

11.5.2 Trigger Operation

Each SOC can be configured to start on one of many input triggers. The primary trigger select for SOCx is in the ADCSOCxCTL.TRIGSEL register, which can select between:

- Disabled (software only)
- CPU Timers 0/1/2 (from each C28x core present)
- GPIO: Input X-Bar INPUT5
- ADCSOCA or ADCSOCB from each ePWM module

SOC Principle of Operation

www.ti.com

In addition, each SOC can also be triggered when the ADCINT1 flag or ADCINT2 flag is set. This is achieved by configuring the ADCINTSOCSEL1 register (for SOC0 to SOC7) or the ADCINTSOCSEL2 register (for SOC8 to SOC15). This is useful for creating continuous conversions.

11.5.3 ADC Acquisition (Sample and Hold) Window

External signal sources vary in their ability to drive an analog signal quickly and effectively. In order to achieve rated resolution, the signal source needs to charge the sampling capacitor in the ADC core to within 0.5LSBs of the signal voltage. The acquisition window is the amount of time the sampling capacitor is allowed to charge and is configurable for SOCx by the ADCSOCxCTL.ACQPS register.

ACQPS is a 9-bit register that can be set to a value between 0 and 511, resulting in an acquisition window duration of:

Acquisition window = (ACQPS + 1)·(System Clock (SYSCLK) cycle time)

- The acquisition window duration is based on the System Clock (SYSCLK), not the ADC clock (ADCCLK).
- The selected acquisition window duration must be at least as long as one ADCCLK cycle.
- The datasheet will specify a minimum acquisition window duration (in nanoseconds). The user is responsible for selecting an acquisition window duration that meets this requirement.

11.5.4 ADC Input Models

For single-ended operation, the ADC input characteristics for values in the single-ended input model (see Figure 11-3) can be found in the device data manual.

Figure 11-3. Single-Ended Input Model

For differential operation, the ADC input characteristics for values in the differential input model (see Figure 11-4) can be found in the device data manual.

Figure 11-4. Differential Input Model

These input models should be used along with actual signal source impedance to determine the acquisition window duration. See Section 11.15.2 for more information.

11.5.5 Channel Selection

Each SOC can be configured to convert any of the ADC channels. This behavior is selected for SOCx by the ADCSOCxCTL.CHSEL register. Depending on the signal mode, the selection is different. For singleended signal mode, the value in CHSEL selects a single pin as the input. For differential signal mode, the value in CHSEL selects an even-odd pin pair to be the positive and negative inputs. This is summarized in Table 11-6.

NOTE: Regardless of configured resolution and signal mode, channel 13 on ADC-A (temperature sensor) and channel 12 on all ADCs will be sampled in 12-bit single-ended mode.

Input Mode	CHSEL	Input		
Single-Ended	0	ADCIN0		
	1	ADC	CIN1	
	2	ADCIN2		
	3	ADC	CIN3	
	4	ADC	CIN4	
	5	ADC	CIN5	
	6	ADC	CIN6	
	7	ADC	CIN7	
	8	ADC	CIN8	
	9	ADC	CIN9	
	10	ADCIN10		
	11	ADCIN11		
	12	ADCIN12		
	13	ADCIN13		
	14	ADCIN14		
	15	ADC	IN15	
	CHSEL	Positive Input	Negative Input	
Differential	0 or 1	ADCIN0	ADCIN1	
	2 or 3	ADCIN2	ADCIN3	
	4 or 5	ADCIN4	ADCIN5	
	6 or 7	ADCIN6	ADCIN7	
	8 or 9	ADCIN8	ADCIN9	
	10 or 11	ADCIN10	ADCIN11	
	12 or 13	ADCIN12	ADCIN13	
	14 or 15	ADCIN14 ADCIN		

Table 11-6. Channel Selection of Input Pins

11.6 SOC Configuration Examples

The following sections provide some specific examples of how to configure the SOCs to produce some conversions.

11.6.1 Single Conversion from ePWM Trigger

To configure ADCA to perform a single conversion on channel ADCIN1 when the ePWM timer reaches its period match, a few things are necessary. First, ePWM3 must be configured to generate an SOCA or SOCB signal (in this statement, SOC refers to a signal in the ePWM module). See the *Enhanced Pulse Width Modulator Module (ePWM)* chapter on how to do this. Assume that SOCB was chosen.

SOC5 is chosen arbitrarily. Any of the 16 SOCs could be used.

Assuming a 100ns sample window is desired with a SYSCLK frequency of 200MHz, then the acquisition window duration should be 100ns/5ns = 20 SYSCLK cycles. The ACQPS field should therefore be set to 20 - 1 = 19.

AdcaRegs.ADCSOC5CTL.bit.CHSEL = 1; //SOC5 will convert ADCINA1 AdcaRegs.ADCSOC5CTL.bit.ACQPS = 19; //SOC5 will use sample duration of 20 SYSCLK cycles AdcaRegs.ADCSOC5CTL.bit.TRIGSEL = 10; //SOC5 will begin conversion on ePWM3 SOCB

As configured, when ePWM3 matches its period and generates the SOCB signal, the ADC will begin sampling channel ADCINA1 (SOC5) immediately if the ADC is idle. If the ADC is busy, ADCINA1 will begin sampling when SOC5 gains priority (see Section 11.7). The ADC control logic will sample ADCINA1 with the specified acquisition window width of 100 ns. Immediately after the acquisition is complete, the ADC will begin converting the sampled voltage to a digital value. When the ADC conversion is complete, the results will be available in the ADCRESULT5 register (see Section 11.14 for exact sample, conversion, and result latch timings).

11.6.2 Oversampled Conversion from ePWM Trigger

To configure the ADC to oversample ADCINA1 4 times, we use the same configurations as the previous example, but apply them to SOC5, SOC6, SOC7, and SOC8.

AdcaRegs.ADCSOC5CTL.bit.CHSEL = 1;	; //SOC5	will	convert ADCINA1			
AdcaRegs.ADCSOC5CTL.bit.ACQPS = 19	9; //SOC5	will	use sample duration	of 20	SYSCLK	cycles
AdcaRegs.ADCSOC5CTL.bit.TRIGSEL =	10; //SOC5	will	begin conversion on	ePWM3	SOCB	
AdcaRegs.ADCSOC6CTL.bit.CHSEL = 1;	; //SOC6	will	convert ADCINA1			
AdcaRegs.ADCSOC6CTL.bit.ACQPS = 19	9; //SOC6	will	use sample duration	of 20	SYSCLK	cycles
AdcaRegs.ADCSOC6CTL.bit.TRIGSEL =	10; //SOC6	will	begin conversion on	ePWM3	SOCB	
AdcaRegs.ADCSOC7CTL.bit.CHSEL = 1;	; //SOC7	will	convert ADCINA1			
AdcaRegs.ADCSOC7CTL.bit.ACQPS = 19	9; //SOC7	will	use sample duration	of 20	SYSCLK	cycles
AdcaRegs.ADCSOC7CTL.bit.TRIGSEL =	10; //SOC7	will	begin conversion on	ePWM3	SOCB	
AdcaRegs.ADCSOC8CTL.bit.CHSEL = 1;	; //SOC8	will	convert ADCINA1			
AdcaRegs.ADCSOC8CTL.bit.ACQPS = 19	9; //SOC8	will	use sample duration	of 20	SYSCLK	cycles
AdcaRegs.ADCSOC8CTL.bit.TRIGSEL =	10; //SOC8	will	begin conversion on	ePWM3	SOCB	

As configured, when ePWM3 matches its period and generates the SOCB signal, the ADC will begin sampling channel ADCINA1 (SOC5) immediately if the ADC is idle. If the ADC is busy, ADCINA1 will begin sampling when SOC5 gains priority (see ADC Conversion Priority). Once the conversion is complete for SOC5, SOC6 will begin converting ADCINA1 and the results for SOC5 will be placed in the ADCRESULT5 register. All four conversions will eventually be completed sequentially, with the results in ADCRESULT5, ADCRESULT6, ADCRESULT7, and ADCRESULT8 for SOC5, SOC6, SOC7, and SOC8, respectively.

NOTE: It is possible, but unlikely, that the ADC could begin converting SOC6, SOC7, or SOC8 before SOC5 depending on the position of the round-robin pointer when the ePWM trigger is received. See ADC Conversion Priority to understand how the next SOC to be converted is chosen.

11.6.3 Multiple Conversions from CPU Timer Trigger

This example will show how to sample multiple signals with different acquisition window requirements. CPU1 Timer 2 will be used to generate the trigger. To see how to configure the CPU timer, see the *System Control and Interrupts* chapter.

A good first step when designing a sampling scheme with many signals is to list out the signals and their required acquisition window. From this, calculate the necessary number of SYSCLK cycles for each signal, then the ACQPS register setting. This is shown in Table 11-7, where a SYCLK of 200MHz is assumed (5ns cycle time).

Signal Name	Acquisition Window Requirement (ns)	Acquisition Window SYSCLK Cycles	ACQPS Register Value
Signal 1	>120ns	120ns/5ns = 24	24 – 1 = 23
Signal 2	>444ns	444ns/5ns = 89 (round up)	89 - 1 = 88
Signal 3	>110ns	110ns/5ns = 22	22 – 1 = 21
Signal 4	>291ns	291ns/5ns = 59 (round up)	59 – 1 = 58

 Table 11-7. Example Requirements for Multiple Signal Sampling

Next decide which ADC pins to connect to each signal. This will be highly dependent on application board layout. Once the pins are selected, determining the value of CHSEL is straightforward (see Table 11-8).

Table 11-8. Example Connections for Multiple Signal Sampling

Signal Name	ADC PIN	CHSEL Register Value
Signal 1	ADCINA5	5
Signal 2	ADCINA0	0
Signal 3	ADCINA3	3
Signal 4	ADCINA2	2

With the information tabulated, it is easy to generate the SOC configurations:

AdcaRegs.ADCSOC0CTL.bit.CHSEL =	5;	//SOC0	will	convert ADCINA5		
AdcaRegs.ADCSOC0CTL.bit.ACQPS =	23;	//SOC0	will	use sample duration	of 24 SYSCLK	cycles
AdcaRegs.ADCSOC0CTL.bit.TRIGSEL	= 3;	//SOC0	will	begin conversion on	CPU1 Timer 2	
AdcaRegs.ADCSOC1CTL.bit.CHSEL =	0;	//SOC1	will	convert ADCINA0		
AdcaRegs.ADCSOC1CTL.bit.ACQPS =	88;	//SOC1	will	use sample duration	of 89 SYSCLK	cycles
AdcaRegs.ADCSOC1CTL.bit.TRIGSEL	= 3;	//SOC1	will	begin conversion on	CPU1 Timer 2	
AdcaRegs.ADCSOC2CTL.bit.CHSEL =	3;	//SOC2	will	convert ADCINA3		
AdcaRegs.ADCSOC2CTL.bit.ACQPS =	21;	//SOC2	will	use sample duration	of 22 SYSCLK	cycles
AdcaRegs.ADCSOC2CTL.bit.TRIGSEL	= 3;	//SOC2	will	begin conversion on	CPU1 Timer 2	
AdcaRegs.ADCSOC3CTL.bit.CHSEL =	2;	//SOC3	will	convert ADCINA2		
AdcaRegs.ADCSOC3CTL.bit.ACQPS =	58;	//SOC3	will	use sample duration	of 59 SYSCLK	cycles
AdcaRegs.ADCSOC3CTL.bit.TRIGSEL	= 3;	//SOC3	will	begin conversion on	CPU1 Timer 2	

As configured, when CPU1 Timer 2 generates an event, SOC0, SOC1, SOC2, and SOC3 will eventually be sampled and converted, in that order. The conversion results for ACINA5 (Signal 1) will be in ADCRESULT0. Similarly, The results for ADCINA0 (Signal 2), ADCINA3 (Signal 3), and ADCINA2 (Signal 4) will be in ADCRESULT1, ADCRESULT2, and ADCRESULT3, respectively.

NOTE: It is possible, but unlikely, that the ADC could begin converting SOC1, SOC2, or SOC3 before SOC0 depending on the position of the round-robin pointer when the CPU Timer trigger is received. See ADC Conversion Priority to understand how the next SOC to be converted is chosen.

SOC Configuration Examples

11.6.4 Software Triggering of SOCs

At any point, whether or not the SOCs have been configured to accept a specific trigger, a software trigger can set the SOCs to be converted. This is accomplished by writing bits in the ADCSOCFRC1 register.

Software triggering of the previous example without waiting for the CPU1 Timer 2 to generate the trigger could be accomplished by the statement:

AdcaRegs.ADCSOCFRC1.all = 0x000F; //set SOC flags for SOC0 to SOC3

11.7 ADC Conversion Priority

When multiple SOC flags are set at the same time, one of two forms of priority determines the order in which they are converted. The default priority method is round robin. In this scheme, no SOC has an inherent higher priority than another. Priority depends on the round robin pointer (RRPOINTER). The RRPOINTER reflected in the ADCSOCPRIORITYCTL register points to the last SOC converted. The highest priority SOC is given to the next value greater than the RRPOINTER value, wrapping around back to SOC0 after SOC15. At reset the value is 16 since 0 indicates a conversion has already occurred. When RRPOINTER equals 16 the highest priority is given to SOC0. The RRPOINTER is reset by a device reset, when the ADCCTL1.RESET bit is set, or when the SOCPRICTL register is written.

An example of the round robin priority method is given in Figure 11-5.

Figure 11-5. Round Robin Priority Example

Α soc A After reset, SOC0 is highest priority SOC; SO 0 SOC7 receives trigger; 15 SOC7 configured channel is converted soc immediately. 14 в RRPOINTER changes to point to SOC 7; 13 SOC8 is now highest priority SOC . RRPOINTER C SOC2 & SOC12 triggers rcvd. simultaneously; (default = 16) SOC12 is first on round robin wheel; SOC12 configured channel is converted while SOC2 stays pending. RRPOINTER changes to point to SOC 12; D SOC2 configured channel is now converted . SO E RRPOINTER changes to point to SOC 2; 8 SOC3 is now highest priority SOC . В С soc soc so soc 0 0 15 15 SO 14 13 13 RRPOINTER RRPOINTER 12 (value = 7)(value = 7 soc ์ รด 6 10 6 SO(SO soc 8 soc 8 q 7 9 7 D Ε soc soc SO SO 15 15 SO 2 14 13 13 RRPOINTER RRPOINTER SOC 12 (value = 12) (value = 2)12 ้รดต 6 10 6 10 soc 9 soc 9 SO(SOC soc soc 7 7 8 8

The SOCPRIORITY field in the ADCSOCPRIORITYCTL register can be used to assign high priority from a single to all of the SOCs. When configured as high priority, an SOC will interrupt the round robin wheel after any current conversion completes and insert itself in as the next conversion. After its conversion completes, the round robin wheel will continue where it was interrupted. If two high priority SOC's are triggered at the same time, the SOC with the lower number will take precedence.

ADC Conversion Priority

www.ti.com

High priority mode is assigned first to SOC0, then in increasing numerical order. The value written in the SOCPRIORITY field defines the first SOC that is not high priority. In other words, if a value of 4 is written into SOCPRIORITY, then SOC0, SOC1, SOC2, and SOC3 are defined as high priority, with SOC0 the highest.

An example using high priority SOC's is given in Figure 11-6.

Figure 11-6. High Priority Example Α soc Example when SOCPRIORITY = 4 4 soc SOC 15 After reset, SOC4 is 1st on round robin wheel; High Priority Α SOC7 receives trigger; soc SOC SOC7 configured channel is converted immediately . 0 14 в RRPOINTER changes to point to SOC 7; ŝoĉ SOC8 is now 1st on round robin wheel . 1 RRPOINTER soc 13 (default = 16)50C 2 С SOC2 & SOC12 triggers rcvd. simultaneously; SOC2 interrupts round robin wheel and SOC 2 configured channel is converted while SOC 12 stays pending . soc 12 8 D RRPOINTER stays pointing to 7; SOC12 configured channel is now converted . soc soc 11 SOC 10 9 Е RRPOINTER changes to point to SOC 12; SOC13 is now 1st on round robin wheel . В С soc soc 4 4 soc soc soc soc 5 15 15 5 High Priority High Priority soc SOC SOC SOC 0 14 0 14 6 6 soc 1 SOC 13 RRPOINTER SOC 13 RRPOINTER soc 2 (value = 7 (value = 7 soc 3 soc SOC SOC 12 8 8 soc soc soc soc 11 9 11 9 soc soc 10 10 D Ε soc soc 4 4 soc soc soc SOC 15 5 15 5 High Priority High Priority soc SOC SOC SOC SOC 0 14 0 6 14 soc 1 RRPOINTER SOC 13 RRPOINTER soc 13 (value = 7 (value = 12) soc 2 SOC 3 SO SOC 12 8 12 8 3 soc SOC soc soc 11 9 11 9 soc soc 10 10

11.9 EOC and Interrupt Operation

Each SOC has a corresponding end-of-conversion (EOC) signal. This EOC signal can be used to trigger an ADC interrupt. The ADC can be configured to generate the EOC pulse at either the end of the acquisition window or at the end of the voltage conversion. This is configured using the bit INTPULSEPOS in the ADCCTL1 register. See Section 11.14, for exact EOC pulse location.

Each ADC module has 4 configurable ADC interrupts. These interrupts can be triggered by any of the 16 EOC signals. The flag bit for each ADCINT can be read directly to determine if the associated SOC is complete or the interrupt can be passed on to the PIE.

NOTE: The ADCCTL1.ADCBSY bit being clear does not indicate that all conversions in a set of SOCs have completed, only that the ADC is ready to process the next conversion. To determine if a sequence of SOCs is complete, link an ADCINT flag to the last SOC in the sequence and monitor that ADCINT flag.

Figure 11-8 shows a block diagram of the ADC interrupt structure.

Figure 11-8. ADC EOC Interrupts

11.9.1 Interrupt Overflow

If the EOC signal would set a flag in the ADCINTFLG register, but that flag is already set, an interrupt overflow occurs. By default, overflow interrupts will not be passed on to the PIE module. When an overflow occurs on a given flag in the ADCINTFLG register, the corresponding flag in the ADCINOVF register is set. This overflow flag is only used to detect that an overflow has occurred; it does not block further interrupts from propagating to the PIE module.

When an ADC interrupt overflow could occur, the application should check the appropriate ADCINTOVF flag inside the ISR or in the background loop and take appropriate action when an overflow is detected. The following code snippet demonstrates how to check the ADCINOVF flag inside the ISR after attempting to clear the ADCINT flag.

```
AdcaRegs.ADCINTFLGCLR.bit.ADCINT1 = 1; //clear INT1 flag for ADC-A
if(1 == AdcaRegs.ADCINTOVF.bit.ADCINT1) //ADCINT overflow occurred
{
    AdcaRegs.ADCINTOVFCLR.bit.ADCINT1 = 1 //Clear overflow flag
```


11.16 ADC Registers

This section describes the Analog-to-Digital Converter Registers.

11.16.1 ADC Base Addresses

Device Registers	Register Name	Start Address	End Address
AdcaResultRegs	ADC_RESULT_REGS	0x0000_0B00	0x0000_0B1F
AdcbResultRegs	Regs ADC_RESULT_REGS 0x0000_0B20		0x0000_0B3F
AdccResultRegs	ADC_RESULT_REGS	0x0000_0B40	0x0000_0B5F
AdcdResultRegs	ADC_RESULT_REGS	0x0000_0B60	0x0000_0B7F
AdcaRegs	ADC_REGS	0x0000_7400	0x0000_747F
AdcbRegs	ADC_REGS	0x0000_7480	0x0000_74FF
AdccRegs	ADC_REGS	0x0000_7500	0x0000_757F
AdcdRegs	ADC_REGS	0x0000_7580	0x0000_75FF

11.16.2 ADC_REGS Registers

Table 11-14 lists the ADC_REGS registers. All register offset addresses not listed in Table 11-14 should be considered as reserved locations and the register contents should not be modified.

Offset	Acronym	Register Name	Write Protection	Section
0h	ADCCTL1	ADC Control 1 Register	EALLOW	Go
1h	ADCCTL2	ADC Control 2 Register	EALLOW	Go
2h	ADCBURSTCTL	ADC Burst Control Register	EALLOW	Go
3h	ADCINTFLG	ADC Interrupt Flag Register		Go
4h	ADCINTFLGCLR	ADC Interrupt Flag Clear Register		Go
5h	ADCINTOVF	ADC Interrupt Overflow Register		Go
6h	ADCINTOVFCLR	ADC Interrupt Overflow Clear Register		Go
7h	ADCINTSEL1N2	ADC Interrupt 1 and 2 Selection Register	EALLOW	Go
8h	ADCINTSEL3N4	ADC Interrupt 3 and 4 Selection Register	EALLOW	Go
9h	ADCSOCPRICTL	ADC SOC Priority Control Register	EALLOW	Go
Ah	ADCINTSOCSEL1	ADC Interrupt SOC Selection 1 Register	EALLOW	Go
Bh	ADCINTSOCSEL2	ADC Interrupt SOC Selection 2 Register	EALLOW	Go
Ch	ADCSOCFLG1	ADC SOC Flag 1 Register		Go
Dh	ADCSOCFRC1	ADC SOC Force 1 Register		Go
Eh	ADCSOCOVF1	ADC SOC Overflow 1 Register		Go
Fh	ADCSOCOVFCLR1	ADC SOC Overflow Clear 1 Register		Go
10h	ADCSOC0CTL	ADC SOC0 Control Register	EALLOW	Go
12h	ADCSOC1CTL	ADC SOC1 Control Register	EALLOW	Go
14h	ADCSOC2CTL	ADC SOC2 Control Register	EALLOW	Go
16h	ADCSOC3CTL	ADC SOC3 Control Register	EALLOW	Go
18h	ADCSOC4CTL	ADC SOC4 Control Register	EALLOW	Go
1Ah	ADCSOC5CTL	ADC SOC5 Control Register	EALLOW	Go
1Ch	ADCSOC6CTL	ADC SOC6 Control Register	EALLOW	Go
1Eh	ADCSOC7CTL	ADC SOC7 Control Register	EALLOW	Go
20h	ADCSOC8CTL	ADC SOC8 Control Register	EALLOW	Go
22h	ADCSOC9CTL	ADC SOC9 Control Register	EALLOW	Go
24h	ADCSOC10CTL	ADC SOC10 Control Register	EALLOW	Go
26h	ADCSOC11CTL	ADC SOC11 Control Register	EALLOW	Go
28h	ADCSOC12CTL	ADC SOC12 Control Register	EALLOW	Go
2Ah	ADCSOC13CTL	ADC SOC13 Control Register	EALLOW	Go
2Ch	ADCSOC14CTL	ADC SOC14 Control Register	EALLOW	Go
2Eh	ADCSOC15CTL	ADC SOC15 Control Register	EALLOW	Go
30h	ADCEVTSTAT	ADC Event Status Register		Go
32h	ADCEVTCLR	ADC Event Clear Register		Go
34h	ADCEVTSEL	ADC Event Selection Register	EALLOW	Go
36h	ADCEVTINTSEL	ADC Event Interrupt Selection Register	EALLOW	Go
38h	ADCOSDETECT	ADC Open and Shorts Detect Register	EALLOW	Go
39h	ADCCOUNTER	ADC Counter Register		Go
3Ah	ADCREV	ADC Revision Register		Go
3Bh	ADCOFFTRIM	ADC Offset Trim Register	EALLOW	Go
40h	ADCPPB1CONFIG	ADC PPB1 Config Register	EALLOW	Go
41h	ADCPPB1STAMP	ADC PPB1 Sample Delay Time Stamp Register		Go
42h	ADCPPB10FFCAL	ADC PPB1 Offset Calibration Register	EALLOW	Go
43h	ADCPPB10FFREF	ADC PPB1 Offset Reference Register		Go

Table 11-14. ADC_REGS Registers

TEXAS INSTRUMENTS

www.ti.com

Table 11-14	. ADC	REGS	Registers	(continued)
-------------	-------	------	-----------	-------------

Offset	Acronym	Register Name	Write Protection	Section
44h	ADCPPB1TRIPHI	ADC PPB1 Trip High Register	EALLOW	Go
46h	ADCPPB1TRIPLO	ADC PPB1 Trip Low/Trigger Time Stamp Register	EALLOW	Go
48h	ADCPPB2CONFIG	ADC PPB2 Config Register	EALLOW	Go
49h	ADCPPB2STAMP	ADC PPB2 Sample Delay Time Stamp Register		Go
4Ah	ADCPPB2OFFCAL	ADC PPB2 Offset Calibration Register	EALLOW	Go
4Bh	ADCPPB2OFFREF	ADC PPB2 Offset Reference Register		Go
4Ch	ADCPPB2TRIPHI	ADC PPB2 Trip High Register	EALLOW	Go
4Eh	ADCPPB2TRIPLO	ADC PPB2 Trip Low/Trigger Time Stamp Register	EALLOW	Go
50h	ADCPPB3CONFIG	ADC PPB3 Config Register	EALLOW	Go
51h	ADCPPB3STAMP	ADC PPB3 Sample Delay Time Stamp Register		Go
52h	ADCPPB3OFFCAL	ADC PPB3 Offset Calibration Register	EALLOW	Go
53h	ADCPPB3OFFREF	ADC PPB3 Offset Reference Register		Go
54h	ADCPPB3TRIPHI	ADC PPB3 Trip High Register	EALLOW	Go
56h	ADCPPB3TRIPLO	ADC PPB3 Trip Low/Trigger Time Stamp Register	EALLOW	Go
58h	ADCPPB4CONFIG	ADC PPB4 Config Register	EALLOW	Go
59h	ADCPPB4STAMP	ADC PPB4 Sample Delay Time Stamp Register		Go
5Ah	ADCPPB4OFFCAL	ADC PPB4 Offset Calibration Register	EALLOW	Go
5Bh	ADCPPB4OFFREF	ADC PPB4 Offset Reference Register		Go
5Ch	ADCPPB4TRIPHI	ADC PPB4 Trip High Register	EALLOW	Go
5Eh	ADCPPB4TRIPLO	ADC PPB4 Trip Low/Trigger Time Stamp Register	EALLOW	Go
70h	ADCINLTRIM1	ADC Linearity Trim 1 Register	EALLOW	Go
72h	ADCINLTRIM2	ADC Linearity Trim 2 Register	EALLOW	Go
74h	ADCINLTRIM3	ADC Linearity Trim 3 Register	EALLOW	Go
76h	ADCINLTRIM4	ADC Linearity Trim 4 Register	EALLOW	Go
78h	ADCINLTRIM5	ADC Linearity Trim 5 Register	EALLOW	Go
7Ah	ADCINLTRIM6	ADC Linearity Trim 6 Register	EALLOW	Go

Complex bit access types are encoded to fit into small table cells. Table 11-15 shows the codes that are used for access types in this section.

Access Type	Code	Description			
Read Type					
R	R	Read			
R-0	R -0	Read Returns 0s			
Write Type					
W	W	Write			
W1S	W 1S	Write 1 to set			
Reset or Default Value					
-n		Value after reset or the default value			
Register Array Variables					

Table 11-15.	ADC	REGS	Access	Type	Codes

11.16.2.1 ADCCTL1 Register (Offset = 0h) [reset = 0h]

ADCCTL1 is shown in Figure 11-26 and described in Table 11-16.

Return to the Summary Table.

ADC Control 1 Register

Figure 11-26. ADCCTL1 Register

			-		-		
15	14	13	12	11	10	9	8
RESE	RVED	ADCBSY	RESERVED	ADCBSYCHN			
R-	0h	R-0h	R-0h		R-0	Dh	
7	6	5	4	3	2	1	0
ADCPWDNZ		RESE	RVED		INTPULSEPOS	RESE	RVED
R/W-0h		R-	0h		R/W-0h	R-	0h

Table 11-16. ADCCTL1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-14	RESERVED	R	0h	Reserved
13	ADCBSY	R	Oh	ADC Busy. Set when ADC SOC is generated, cleared by hardware four ADC clocks after negative edge of S/H pulse. Used by the ADC state machine to determine if ADC is available to sample.
				0 ADC is available to sample next channel
				1 ADC is busy and cannot sample another channel
				Reset type: SYSRSn
12	RESERVED	R	0h	Reserved
11-8	ADCBSYCHN	R	0h	ADC Busy Channel. Set when an ADC Start of Conversion (SOC) is generated.
				When ADCBSY=0: holds the value of the last converted SOC
				When ADCBSY=1: reflects the SOC currently being processed
				0h SOC0 is currently processing or was last SOC converted
				1h SOC1 is currently processing or was last SOC converted
				2h SOC2 is currently processing or was last SOC converted
				3h SOC3 is currently processing or was last SOC converted
				4h SOC4 is currently processing or was last SOC converted
				5h SOC5 is currently processing or was last SOC converted
				6h SOC6 is currently processing or was last SOC converted
				7h SOC7 is currently processing or was last SOC converted
				8h SOC8 is currently processing or was last SOC converted
				9h SOC9 is currently processing or was last SOC converted
				Ah SOC10 is currently processing or was last SOC converted
				Bh SOC11 is currently processing or was last SOC converted
				Ch SOC12 is currently processing or was last SOC converted
				Dh SOC13 is currently processing or was last SOC converted
				Eh SOC14 is currently processing or was last SOC converted
				Fh SOC15 is currently processing or was last SOC converted
				Reset type: SYSRSn
7	ADCPWDNZ	R/W	0h	ADC Power Down (active low). This bit controls the power up and power down of all the analog circuitry inside the analog core.
				0 All analog circuitry inside the core is powered down
				1 All analog circuitry inside the core is powered up
				Reset type: SYSRSn
6-3	RESERVED	R	0h	Reserved

			•	,
Bit	Field	Туре	Reset	Description
2	INTPULSEPOS	R/W	0h	ADC Interrupt Pulse Position.
				0 Interrupt pulse generation occurs at the end of the acquisition window
				1 Interrupt pulse generation occurs at the end of the conversion. Results will latch 1 or more cycles later. Refer to the ADC timing diagrams for exact timings for the specific configurations being used. Reset type: SYSRSn
1-0	RESERVED	R	0h	Reserved

Table 11-16. ADCCTL1 Register Field Descriptions (continued)

11.16.2.2 ADCCTL2 Register (Offset = 1h) [reset = 0h]

ADCCTL2 is shown in Figure 11-27 and described in Table 11-17.

Return to the Summary Table.

ADC Control 2 Register

Figure 11-27. ADCCTL2 Register

			•		•		
15	14	13	12	11	10	9	8
	RESERVED				RESERVED		
	R-0h				R-0h		
7	6	5	4	3	2	1	0
SIGNALMODE	RESOLUTION	RESERVED		PRESCALE			
R/W-0h	R/W-0h	R-	R-0h		R/W-0h		

Table 11-17. ADCCTL2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-13	RESERVED	R	0h	Reserved
12-8	RESERVED	R	0h	Reserved
7	SIGNALMODE	R/W	Oh	SOC Signaling Mode. Selects the input mode of the converter. Use the AdcSetMode function to change the signal mode. 0 Single-ended
				1 Differential
				Reset type: SYSRSn
6	RESOLUTION	R/W	Oh	SOC Conversion Resolution. Selects the resolution of the converter. Use the AdcSetMode function to change the resolution.
				0 12-bit resolution
				1 16-bit resolution
				Reset type: SYSRSn
5-4	RESERVED	R	0h	Reserved
3-0	PRESCALE	R/W	0h	ADC Clock Prescaler.
				0000 ADCCLK = Input Clock / 1.0
				0001 Invalid
				0010 ADCCLK = Input Clock / 2.0
				0011 ADCCLK = Input Clock / 2.5
				0100 ADCCLK = Input Clock / 3.0
				0101 ADCCLK = Input Clock / 3.5
				0110 ADCCLK = Input Clock / 4.0
				0111 ADCCLK = Input Clock / 4.5
				1000 ADCCLK = Input Clock / 5.0
				1001 ADCCLK = Input Clock / 5.5
				1010 ADCCLK = Input Clock / 6.0
				1011 ADCCLK = Input Clock / 6.5
				1100 ADCCLK = Input Clock / 7.0
				1101 ADCCLK = Input Clock / 7.5
				1110 ADCCLK = Input Clock / 8.0
				1111 ADCCLK = Input Clock / 8.5
				Reset type: SYSRSn

11.16.2.4 ADCINTFLG Register (Offset = 3h) [reset = 0h]

ADCINTFLG is shown in Figure 11-29 and described in Table 11-19.

Return to the Summary Table.

ADC Interrupt Flag Register

Figure 11-29. ADCINTFLG Register									
15	14	13	12	11	10	9	8		
	RESERVED								
	R-0h								
7	6	5	4	3	2	1	0		
	RESERVED			ADCINT4	ADCINT3	ADCINT2	ADCINT1		
	R-	Dh		R-0h	R-0h	R-0h	R-0h		

Table 11-19. ADCINTFLG Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-4	RESERVED	R	0h	Reserved
3	ADCINT4	R	0h	ADC Interrupt 4 Flag. Reading these flags indicates if the associated ADCINT pulse was generated since the last clear.
				0 No ADC interrupt pulse generated
				1 ADC interrupt pulse generated
				If the ADC interrupt is placed in continue to interrupt mode (INTSELxNy register) then further interrupt pulses are generated whenever a selected EOC event occurs even if the flag bit is set. If the continuous mode is not enabled, then no further interrupt pulses are generated until the user clears this flag bit using the ADCINFLGCLR register. Rather, an ADC interrupt overflow event occurs in the ADCINTOVF register. Reset type: SYSRSn
2	ADCINT3	R	0h	ADC Interrupt 3 Flag. Reading these flags indicates if the associated ADCINT pulse was generated since the last clear.
				0 No ADC interrupt pulse generated
				1 ADC interrupt pulse generated
				If the ADC interrupt is placed in continue to interrupt mode (INTSELxNy register) then further interrupt pulses are generated whenever a selected EOC event occurs even if the flag bit is set. If the continuous mode is not enabled, then no further interrupt pulses are generated until the user clears this flag bit using the ADCINFLGCLR register. Rather, an ADC interrupt overflow event occurs in the ADCINTOVF register. Reset type: SYSRSn
1	ADCINT2	R	0h	ADC Interrupt 2 Flag. Reading these flags indicates if the associated ADCINT pulse was generated since the last clear.
				0 No ADC interrupt pulse generated
				1 ADC interrupt pulse generated
				If the ADC interrupt is placed in continue to interrupt mode (INTSELxNy register) then further interrupt pulses are generated whenever a selected EOC event occurs even if the flag bit is set. If the continuous mode is not enabled, then no further interrupt pulses are generated until the user clears this flag bit using the ADCINFLGCLR register. Rather, an ADC interrupt overflow event occurs in the ADCINTOVF register. Reset type: SYSRSn

Bit	Field	Туре	Reset	Description
0	ADCINT1	R	0h	ADC Interrupt 1 Flag. Reading these flags indicates if the associated ADCINT pulse was generated since the last clear.
				U NO ADC Interrupt pulse generated
				1 ADC interrupt pulse generated
				If the ADC interrupt is placed in continue to interrupt mode (INTSELxNy register) then further interrupt pulses are generated whenever a selected EOC event occurs even if the flag bit is set. If the continuous mode is not enabled, then no further interrupt pulses are generated until the user clears this flag bit using the ADCINFLGCLR register. Rather, an ADC interrupt overflow event occurs in the ADCINTOVF register.
				Reset type: SYSRSn

Table 11-19. ADCINTFLG Register Field Descriptions (continued)

ADC Registers

11.16.2.5 ADCINTFLGCLR Register (Offset = 4h) [reset = 0h]

ADCINTFLGCLR is shown in Figure 11-30 and described in Table 11-20.

Return to the Summary Table.

ADC Interrupt Flag Clear Register

Figure 11-30. ADCINTFLGCLR Register

15	14	13	12	11	10	9	8		
RESERVED									
R-0h									
7	6	5	4	3	2	1	0		
RESERVED				ADCINT4	ADCINT3	ADCINT2	ADCINT1		
R-0h				R-0/W1S-0h	R-0/W1S-0h	R-0/W1S-0h	R-0/W1S-0h		

Table 11-20. ADCINTFLGCLR Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-4	RESERVED	R	0h	Reserved
3	ADCINT4	R-0/W1S	0h	ADC Interrupt 4 Flag Clear. Reads return 0.
				0 No action
				1 Clears respective flag bit in the ADCINTFLG register. If software sets the clear bit on the same cycle that hardware is trying to set the flag bit, then hardware has priority but the overflow bit will not be affected (retains current state)
				Boundary condition: If hardware is trying to set the bit flag while software tries to clear the bit in the same cycle, the following will take place:
				1. SW has prioirity and will clear the flag
				2. HW set will be discarded
				no signal will propagate to the PIE from the latch
				 Overflow flag/condition will be generated Reset type: SYSRSn
2	ADCINT3	R-0/W1S	0h	ADC Interrupt 3 Flag Clear. Reads return 0.
				0 No action
				1 Clears respective flag bit in the ADCINTFLG register. If software sets the clear bit on the same cycle that hardware is trying to set the flag bit, then hardware has priority but the overflow bit will not be affected (retains current state)
				Boundary condition: If hardware is trying to set the bit flag while software tries to clear the bit in the same cycle, the following will take place:
				1. SW has prioirity and will clear the flag
				2. HW set will be discarded
				no signal will propagate to the PIE from the latch
				 Overflow flag/condition will be generated Reset type: SYSRSn

Bit	Field	Туре	Reset	Description
1	ADCINT2	R-0/W1S	0h	ADC Interrupt 2 Flag Clear. Reads return 0.
				0 No action
				1 Clears respective flag bit in the ADCINTFLG register. If software sets the clear bit on the same cycle that hardware is trying to set the flag bit, then hardware has priority but the overflow bit will not be affected (retains current state)
				Boundary condition: If hardware is trying to set the bit flag while software tries to clear the bit in the same cycle, the following will take place:
				1. SW has prioirity and will clear the flag
				2. HW set will be discarded
				no signal will propagate to the PIE from the latch
				3. Overflow flag/condition will be generated Reset type: SYSRSn
0	ADCINT1	R-0/W1S	0h	ADC Interrupt 1 Flag Clear. Reads return 0.
				0 No action
				1 Clears respective flag bit in the ADCINTFLG register. If software sets the clear bit on the same cycle that hardware is trying to set the flag bit, then hardware has priority but the overflow bit will not be affected (retains current state)
				Boundary condition: If hardware is trying to set the bit flag while software tries to clear the bit in the same cycle, the following will take place:
				1. SW has prioirity and will clear the flag
				2. HW set will be discarded
				no signal will propagate to the PIE from the latch
				3. Overflow flag/condition will be generated Reset type: SYSRSn

Table 11-20. ADCINTFLGCLR Register Field Descriptions (continued)

11.16.2.8 ADCINTSEL1N2 Register (Offset = 7h) [reset = 0h]

ADCINTSEL1N2 is shown in Figure 11-33 and described in Table 11-23.

Return to the Summary Table.

ADC Interrupt 1 and 2 Selection Register

Figure 11-33. ADCINTSEL1N2 Register

15	14	13	12	11	10	9	8
RESERVED	INT2CONT	INT2E	RESERVED		INT2	SEL	
R-0h	R/W-0h	R/W-0h	R-0h		R/W	-0h	
7	6	5	4	3	2	1	0
RESERVED	INT1CONT	INT1E	RESERVED		INT1	SEL	
R-0h	R/W-0h	R/W-0h	R-0h		R/W	-0h	

Table 11-23. ADCINTSEL1N2 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	RESERVED	R	0h	Reserved
14	INT2CONT	R/W	0h	ADCINT2 Continue to Interrupt Mode
				0 No further ADCINT2 pulses are generated until ADCINT2 flag (in ADCINTFLG register) is cleared by user.
				1 ADCINT2 pulses are generated whenever an EOC pulse is generated irrespective of whether the flag bit is cleared or not.
12			Ob	
15		N/ VV	011	ADCINI 2 Interrupt Enable
				1 ADCIN I 2 is enabled
10		D	Oh	
12	RESERVED	ĸ	on	Reserved
11-8	INT2SEL	R/W	0h	ADCINT2 EOC Source Select
				0h EOC0 is trigger for ADCINT2
				1h EOC1 is trigger for ADCINT2
				2h EOC2 is trigger for ADCINT2
				3h EOC3 is trigger for ADCINT2
				4h EOC4 is trigger for ADCINT2
				5h EOC5 is trigger for ADCINT2
				6h EOC6 is trigger for ADCINT2
				7h EOC7 is trigger for ADCINT2
				8h EOC8 is trigger for ADCINT2
				9h EOC9 is trigger for ADCINT2
				Ah EOC10 is trigger for ADCINT2
				Bh EOC11 is trigger for ADCINT2
				Ch EOC12 is trigger for ADCINT2
				Dh EOC13 is trigger for ADCINT2
				Eh EOC14 is trigger for ADCINT2
				Fh EOC15 is trigger for ADCINT2
				Reset type: SYSRSn
7	RESERVED	R	0h	Reserved

Table 11-23. ADCINTSEL1N2 Register Field Descriptions (continued)					
Bit	Field	Туре	Reset	Description	
6	INT1CONT	R/W	0h	ADCINT1 Continue to Interrupt Mode	
				0 No further ADCINT1 pulses are generated until ADCINT1 flag (in ADCINTFLG register) is cleared by user.	
				1 ADCINT1 pulses are generated whenever an EOC pulse is generated irrespective of whether the flag bit is cleared or not.	
				Reset type: SYSRSn	
5	INT1E	R/W	0h	ADCINT1 Interrupt Enable	
				0 ADCINT1 is disabled	
				1 ADCINT1 is enabled	
				Reset type: SYSRSn	
4	RESERVED	R	0h	Reserved	
3-0	INT1SEL	R/W	0h	ADCINT1 EOC Source Select	
				0h EOC0 is trigger for ADCINT1	
				1h EOC1 is trigger for ADCINT1	
				2h EOC2 is trigger for ADCINT1	
				3h EOC3 is trigger for ADCINT1	
				4h EOC4 is trigger for ADCINT1	
				5h EOC5 is trigger for ADCINT1	
				6h EOC6 is trigger for ADCINT1	
				7h EOC7 is trigger for ADCINT1	
				8h EOC8 is trigger for ADCINT1	
				9h EOC9 is trigger for ADCINT1	
				Ah EOC10 is trigger for ADCINT1	
				Bh EOC11 is trigger for ADCINT1	
				Ch EOC12 is trigger for ADCINT1	
				Dh EOC13 is trigger for ADCINT1	
				Eh EOC14 is trigger for ADCINT1	
				Fh EOC15 is trigger for ADCINT1	

Reset type: SYSRSn

11.16.2.9 ADCINTSEL3N4 Register (Offset = 8h) [reset = 0h]

ADCINTSEL3N4 is shown in Figure 11-34 and described in Table 11-24.

Return to the Summary Table.

ADC Interrupt 3 and 4 Selection Register

Figure 11-34. ADCINTSEL3N4 Register

			-		-		
15	14	13	12	11	10	9	8
RESERVED	INT4CONT	INT4E	RESERVED		INT49	SEL	
R-0h	R/W-0h	R/W-0h	R-0h		R/W	-0h	
7	6	5	4	3	2	1	0
RESERVED	INT3CONT	INT3E	RESERVED		INT3	SEL	
R-0h	R/W-0h	R/W-0h	R-0h		R/W	-0h	

Table 11-24. ADCINTSEL3N4 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	RESERVED	R	0h	Reserved
14	INT4CONT	R/W	0h	ADCINT4 Continue to Interrupt Mode
				0 No further ADCINT4 pulses are generated until ADCINT4 flag (in ADCINTFLG register) is cleared by user.
				1 ADCINT4 pulses are generated whenever an EOC pulse is generated irrespective of whether the flag bit is cleared or not. Reset type: SYSRSn
13	INT4E	R/W	0h	
				0 ADCINITA is disabled
				1 ADCINTA is enabled
				Reset type: SYSRSn
12	RESERVED	R	0h	Reserved
11-8	INT4SEL	R/W	0h	ADCINT4 EOC Source Select
				0h EOC0 is trigger for ADCINT4
				1h EOC1 is trigger for ADCINT4
				2h EOC2 is trigger for ADCINT4
				3h EOC3 is trigger for ADCINT4
				4h EOC4 is trigger for ADCINT4
				5h EOC5 is trigger for ADCINT4
				6h EOC6 is trigger for ADCINT4
				7h EOC7 is trigger for ADCINT4
				8h EOC8 is trigger for ADCINT4
				9h EOC9 is trigger for ADCINT4
				Ah EOC10 is trigger for ADCINT4
				Bh EOC11 is trigger for ADCINT4
				Ch EOC12 is trigger for ADCINT4
				Dh EOC13 is trigger for ADCINT4
				Eh EOC14 is trigger for ADCINT4
				Fh EOC15 is trigger for ADCINT4
				Reset type: SYSRSn
7	RESERVED	R	0h	Reserved

Bit	Field		Reset	Description
6	INT3CONT	R/W	Oh	ADCINT3 Continue to Interrunt Mode
-				0 No further ADCINT3 pulses are generated until ADCINT3 flag (in ADCINTFLG register) is cleared by user.
				1 ADCINT3 pulses are generated whenever an EOC pulse is generated irrespective of whether the flag bit is cleared or not. Reset type: SYSRSn
5	INT3E	R/W	0h	ADCINT3 Interrupt Enable
				0 ADCINT3 is disabled
				1 ADCINT3 is enabled
				Reset type: SYSRSn
4	RESERVED	R	0h	Reserved
3-0	3-0 INT3SEL	R/W	0h	ADCINT3 EOC Source Select
				0h EOC0 is trigger for ADCINT3
				1h EOC1 is trigger for ADCINT3
				2h EOC2 is trigger for ADCINT3
				3h EOC3 is trigger for ADCINT3
				4h EOC4 is trigger for ADCINT3
				5h EOC5 is trigger for ADCINT3
				6h EOC6 is trigger for ADCINT3
				7h EOC7 is trigger for ADCINT3
				8h EOC8 is trigger for ADCINT3
				9h EOC9 is trigger for ADCINT3
				Ah EOC10 is trigger for ADCINT3
				Bh EOC11 is trigger for ADCINT3
				Ch EOC12 is trigger for ADCINT3
				Dh EOC13 is trigger for ADCINT3
				Eh EOC14 is trigger for ADCINT3
				Fh EOC15 is trigger for ADCINT3

Reset type: SYSRSn

11.16.2.10 ADCSOCPRICTL Register (Offset = 9h) [reset = 200h]

ADCSOCPRICTL is shown in Figure 11-35 and described in Table 11-25.

Return to the Summary Table.

ADC SOC Priority Control Register

Figure 11-35. ADCSOCPRICTL Register

15	14	13	12	11	10	9	8
		RESE		RRPO	INTER		
		R			R-	10h	
7	6	5	4	3	2	1	0
	RRPOINTER				SOCPRIORITY		
	R-10h				R/W-0h		

Table 11-25. ADCSOCPRICTL Register Field Descriptions

Bit	Field	Туре	Reset	Description
15-10	RESERVED	R	0h	Reserved

				······
Bit	Field	Туре	Reset	Description
9-5	RRPOINTER	R	10h	Round Robin Pointer. Holds the value of the last converted round robin SOCx to be used by the round robin scheme to determine order of conversions.
				00h SOC0 was last round robin SOC to convert, SOC1 is highest round robin priority.
				01h SOC1 was last round robin SOC to convert, SOC2 is highest round robin priority.
				02h SOC2 was last round robin SOC to convert, SOC3 is highest round robin priority.
				03h SOC3 was last round robin SOC to convert, SOC4 is highest round robin priority.
				04h SOC4 was last round robin SOC to convert, SOC5 is highest round robin priority.
				05h SOC5 was last round robin SOC to convert, SOC6 is highest round robin priority.
				06h SOC6 was last round robin SOC to convert, SOC7 is highest round robin priority.
				07h SOC7 was last round robin SOC to convert, SOC8 is highest round robin priority.
				08h SOC8 was last round robin SOC to convert, SOC9 is highest round robin priority.
				09h SOC9 was last round robin SOC to convert, SOC10 is highest round robin priority.
				0Ah SOC10 was last round robin SOC to convert, SOC11 is highest round robin priority.
				0Bh SOC11 was last round robin SOC to convert, SOC12 is highest round robin priority.
				0Ch SOC12 was last round robin SOC to convert, SOC13 is highest round robin priority.
				0Dh SOC13 was last round robin SOC to convert, SOC14 is highest round robin priority.
				0Eh SOC14 was last round robin SOC to convert, SOC15 is highest round robin priority.
				0Fh SOC15 was last round robin SOC to convert, SOC0 is highest round robin priority.
				10h Reset value to indicate no SOC has been converted. SOC0 is highest round robin priority. Set to this value when the device is reset, when the ADCCTL1.RESET bit is set, or when the ADCSOCPRICTL register is written. In the latter case, if a conversion is currently in progress, it will complete and then the new priority will take effect.
				Others Invalid value.

Table 11-25. ADCSOCPRICTL Register Field Descriptions (continued)

Reset type: SYSRSn

Bit	Field	Туре	Reset	Description
4-0	SOCPRIORITY	R/W	0h	SOC Priority
				Determines the cutoff point for priority mode and round robin arbitration for SOCx
				00h SOC priority is handled in round robin mode for all channels.
				01h SOC0 is high priority, rest of channels are in round robin mode.
				02h SOC0-SOC1 are high priority, SOC2-SOC15 are in round robin mode.
				03h SOC0-SOC2 are high priority, SOC3-SOC15 are in round robin mode.
				04h SOC0-SOC3 are high priority, SOC4-SOC15 are in round robin mode.
				05h SOC0-SOC4 are high priority, SOC5-SOC15 are in round robin mode.
				06h SOC0-SOC5 are high priority, SOC6-SOC15 are in round robin mode.
				07h SOC0-SOC6 are high priority, SOC7-SOC15 are in round robin mode.
				08h SOC0-SOC7 are high priority, SOC8-SOC15 are in round robin mode.
				09h SOC0-SOC8 are high priority, SOC9-SOC15 are in round robin mode.
				0Ah SOC0-SOC9 are high priority, SOC10-SOC15 are in round robin mode.
				0Bh SOC0-SOC10 are high priority, SOC11-SOC15 are in round robin mode.
				0Ch SOC0-SOC11 are high priority, SOC12-SOC15 are in round robin mode.
				0Dh SOC0-SOC12 are high priority, SOC13-SOC15 are in round robin mode.
				0Eh SOC0-SOC13 are high priority, SOC14-SOC15 are in round robin mode.
				0Fh SOC0-SOC14 are high priority, SOC15 is in round robin mode.
				10h All SOCs are in high priority mode, arbitrated by SOC number.
				Others Invalid selection. Reset type: SYSRSn

Table 11-25. ADCSOCPRICTL Register Field Descriptions (continued)

ADC Registers

11.16.2.14 ADCSOCFRC1 Register (Offset = Dh) [reset = 0h]

ADCSOCFRC1 is shown in Figure 11-39 and described in Table 11-29.

Return to the Summary Table.

ADC SOC Force 1 Register

Figure 11-39. ADCSOCFRC1 Register

15	14	13	12	11	10	9	8
SOC15	SOC14	SOC13	SOC12	SOC11	SOC10	SOC9	SOC8
R-0/W1S-0h							
7	6	5	4	3	2	1	0
SOC7	SOC6	SOC5	SOC4	SOC3	SOC2	SOC1	SOC0
R-0/W1S-0h							

Table 11-29. ADCSOCFRC1 Register Field Descriptions

Bit	Field	Туре	Reset	Description
15	SOC15	R-0/W1S	0h	SOC15 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC15 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action.
				1 Force SOC15 flag bit to 1. This will cause a conversion to start once priority is given to SOC15.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC15 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not. Reset type: SYSRSn
14	SOC14	R-0/W1S	Oh	SOC14 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC14 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				1 Force SOC14 flag bit to 1. This will cause a conversion to start once priority is given to SOC14.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC14 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not. Reset type: SYSRSn

Bit	Field	Туре	Reset	Description
13	SOC13	R-0/W1S	0h	SOC13 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC13 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action.
				1 Force SOC13 flag bit to 1. This will cause a conversion to start once priority is given to SOC13.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC13 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not. Reset type: SYSRSn
12	SOC12	R-0/W1S	0h	SOC12 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC12 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action
				1 Force SOC12 flag bit to 1. This will cause a conversion to start once priority is given to SOC12.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC12 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not. Reset type: SYSRSn
11	SOC11	R-0/W1S	0h	SOC11 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC11 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action
				1 Force SOC11 flag bit to 1. This will cause a conversion to start once priority is given to SOC11.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC11 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not.
				Reset type: SYSRSn
10	SOC10	R-0/W1S	Oh	SOC10 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC10 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action.
				1 Force SOC10 flag bit to 1. This will cause a conversion to start once priority is given to SOC10.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC10 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not. Reset type: SYSRSn

Bit	Field	Туре	Reset	Description
9	SOC9	R-0/W1S	0h	SOC9 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC9 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action.
				1 Force SOC9 flag bit to 1. This will cause a conversion to start once priority is given to SOC9.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC9 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not.
				Reset type: SYSRSN
8	SOC8	R-0/W1S	Oh	SOC8 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC8 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action.
				1 Force SOC8 flag bit to 1. This will cause a conversion to start once priority is given to SOC8.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC8 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not. Reset type: SYSRSn
7	SOC7	R-0/W1S	0h	SOC7 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC7 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action
				1 Force SOC7 flag bit to 1. This will cause a conversion to start once priority is given to SOC7.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC7 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not.
				Reset type: SYSRSn
6	SOC6	R-0/W1S	0h	SOC6 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC6 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action.
				1 Force SOC6 flag bit to 1. This will cause a conversion to start once priority is given to SOC6.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC6 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not.
				Reserved of Ston

Bit	Field	Туре	Reset	Description
5	SOC5	R-0/W1S	0h	SOC5 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC5 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action.
				1 Force SOC5 flag bit to 1. This will cause a conversion to start once priority is given to SOC5.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC5 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not. Reset type: SYSRSn
4	SOC4	R-0/W1S	0h	SOC4 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC4 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action.
				1 Force SOC4 flag bit to 1. This will cause a conversion to start once priority is given to SOC4.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC4 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not.
0	2003	D 0/4/4 C	01-	Reset type: SYSRSn
3	5003	R-0/W15	Un	SOC3 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC3 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action.
				1 Force SOC3 flag bit to 1. This will cause a conversion to start once priority is given to SOC3.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC3 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not.
				Reset type: SYSRSn
2	SOC2	R-0/W1S	Oh	SOC2 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC2 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action.
				1 Force SOC2 flag bit to 1. This will cause a conversion to start once priority is given to SOC2.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC2 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not. Reset type: SYSRSn

Bit	Field	Туре	Reset	Description
1	SOC1	R-0/W1S	0h	SOC1 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC1 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action.
				1 Force SOC1 flag bit to 1. This will cause a conversion to start once priority is given to SOC1.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC1 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not.
				Reset type: SYSRSn
0	SOC0	R-0/W1S	0h	SOC0 Force Start of Conversion Bit. Writing a 1 will force to 1 the SOC0 flag in the ADCSOCFLG1 register. This can be used to initiate a software initiated conversion. Writes of 0 are ignored. This bit will always read as a 0.
				0 No action.
				1 Force SOC0 flag bit to 1. This will cause a conversion to start once priority is given to SOC0.
				If software tries to set this bit on the same clock cycle that hardware tries to clear the SOC0 bit in the ADCSOCFLG1 register, then software has priority and the ADCSOCFLG1 bit will be set. In this case the overflow bit in the ADCSOCOVF1 register will not be affected regardless of whether the ADCSOCFLG1 bit was previously set or not.
				Reset type: SYSRSn

Table 11-29. ADCSOCFRC1 Register Field Descriptions (continued)

ADC Registers

11.16.2.17 ADCSOC0CTL Register (Offset = 10h) [reset = 0h]

ADCSOC0CTL is shown in Figure 11-42 and described in Table 11-32.

Return to the Summary Table.

ADC SOC0 Control Register

		F	igure 11-42. A	ADCSOC0CTL R	egister			
31	30	29	28	27	26	25	24	
			RESERVED				TRIGSEL	
	R-0h							
23	22	21	20	19	18	17	16	
	TRIG	SEL		RESERVED		CHSEL		
	R/W	/-0h		R-0h		R/W-0h		
15	14	13	12	11	10	9	8	
CHSEL		RESERVED						
R/W-0h	R-0h						R/W-0h	
7	6	5	4	3	2	1	0	
			AC	QPS				
	R/W-0h							

Table 11-32. ADCSOC0CTL Register Field Descriptions

Bit	Field	Туре	Reset	Description
31-25	RESERVED	R	0h	Reserved

Bit	Field	Туре	Reset	Description
24-20	TRIGSEL	R/W	0h	SOC0 Trigger Source Select. Along with the SOC0 field in the ADCINTSOCSEL1 register, this bit field configures which trigger will set the SOC0 flag in the ADCSOCFLG1 register to initiate a conversion to start once priority is given to it.
				00h ADCTRIG0 - Software only
				01h ADCTRIG1 - CPU1 Timer 0, TINT0n
				02h ADCTRIG2 - CPU1 Timer 1, TINT1n
				03h ADCTRIG3 - CPU1 Timer 2, TINT2n
				04h ADCTRIG4 - GPIO, ADCEXTSOC
				05h ADCTRIG5 - ePWM1, ADCSOCA
				06h ADCTRIG6 - ePWM1, ADCSOCB
				07h ADCTRIG7 - ePWM2, ADCSOCA
				08h ADCTRIG8 - ePWM2, ADCSOCB
				09h ADCTRIG9 - ePWM3, ADCSOCA
				0Ah ADCTRIG10 - ePWM3, ADCSOCB
				0Bh ADCTRIG11 - ePWM4, ADCSOCA
				0Ch ADCTRIG12 - ePWM4, ADCSOCB
				0Dh ADCTRIG13 - ePWM5, ADCSOCA
				0Eh ADCTRIG14 - ePWM5, ADCSOCB
				0Fh ADCTRIG15 - ePWM6, ADCSOCA
				10h ADCTRIG16 - ePWM6, ADCSOCB
				11h ADCTRIG17 - ePWM7, ADCSOCA
				12h ADCTRIG18 - ePWM7, ADCSOCB
				13h ADCTRIG19 - ePWM8, ADCSOCA
				14h ADCTRIG20 - ePWM8, ADCSOCB
				15h ADCTRIG21 - ePWM9, ADCSOCA
				16h ADCTRIG22 - ePWM9, ADCSOCB
				17h ADCTRIG23 - ePWM10, ADCSOCA
				18h ADCTRIG24 - ePWM10, ADCSOCB
				19h ADCTRIG25 - ePWM11, ADCSOCA
				1Ah ADCTRIG26 - ePWM11, ADCSOCB
				1Bh ADCTRIG27 - ePWM12, ADCSOCA
				1Ch ADCTRIG28 - ePWM12, ADCSOCB
				1Dh ADCTRIG29 - CPU2 Timer 0, TINT0n
				1Eh ADCTRIG30 - CPU2 Timer 1, TINT1n
				1Fh ADCTRIG31 - CPU2 Timer 2, TINT2n
				Reset type: SYSRSn
19	RESERVED	R	0h	Reserved

Table 11-32. ADCSOC0CTL Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
18-15	CHSEL	R/W	0h	SOC0 Channel Select. Selects the channel to be converted when SOC0 is received by the ADC.
				Single-ended Signaling Mode (SIGNALMODE = 0):
				0h ADCIN0
				1h ADCIN1
				2h ADCIN2
				3h ADCIN3
				4h ADCIN4
				5h ADCIN5
				6h ADCIN6
				7h ADCIN7
				8h ADCIN8
				9h ADCIN9
				Ah ADCIN10
				Bh ADCIN11
				Ch ADCIN12
				Dh ADCIN13
				Eh ADCIN14
				Fh ADCIN15
				Differential Signaling Mode (SIGNALMODE = 1):
				0h ADCIN0 (non-inverting) and ADCIN1 (inverting)
				1h ADCIN0 (non-inverting) and ADCIN1 (inverting)
				2h ADCIN2 (non-inverting) and ADCIN3 (inverting)
				3h ADCIN2 (non-inverting) and ADCIN3 (inverting)
				4h ADCIN4 (non-inverting) and ADCIN5 (inverting)
				5h ADCIN4 (non-inverting) and ADCIN5 (inverting)
				6h ADCIN6 (non-inverting) and ADCIN7 (inverting)
				7h ADCIN6 (non-inverting) and ADCIN7 (inverting)
				8h ADCIN8 (non-inverting) and ADCIN9 (inverting)
				9h ADCIN8 (non-inverting) and ADCIN9 (inverting)
				Ah ADCIN10 (non-inverting) and ADCIN11 (inverting)
				Bh ADCIN10 (non-inverting) and ADCIN11 (inverting)
				Ch ADCIN12 (non-inverting) and ADCIN13 (inverting)
				Dh ADCIN12 (non-inverting) and ADCIN13 (inverting)
				Eh ADCIN14 (non-inverting) and ADCIN15 (inverting)
				Fh ADCIN14 (non-inverting) and ADCIN15 (inverting)
			01	Reset type: SYSRSn
14-9	RESERVED	R	Un	Reserved
8-0	ACQPS	R/W	Oh	SOC0 Acquisition Prescale. Controls the sample and hold window for this SOC. The configured acquisition time must be at least as long as one ADCCLK cycle for correct ADC operation. The device datasheet will also specify a minimum sample and hold window duration.
				000h Sample window is 1 system clock cycle wide
				001h Sample window is 2 system clock cycles wide
				002h Sample window is 3 system clock cycles wide
				 AFEN Sample window is 540 system starts such a with
				Reset type: SYSRSn

Table 11-32. ADCSOC0CTL Register Field Descriptions (continued)

ADC Registers

11.16.2.18 ADCSOC1CTL Register (Offset = 12h) [reset = 0h]

ADCSOC1CTL is shown in Figure 11-43 and described in Table 11-33.

Return to the Summary Table.

ADC SOC1 Control Register

Figure	11-43.	ADCSOC1CTL	Register

31	30	29	28	27	26	25	24	
	RESERVED							
			R-0h				R/W-0h	
23	22	21	20	19	18	17	16	
	TRIGSEL RESERVED CHSEL							
	R/W-0h					R/W-0h		
15	14	13	12	11	10	9	8	
CHSEL	RESERVED							
R/W-0h	R-0h						R/W-0h	
7	6	5	4	3	2	1	0	
			AC	QPS				
			R/V	V-0h				

Table 11-33. ADCSOC1CTL Register Field Descriptions

Bit	Field	Туре	Reset	Description
31-25	RESERVED	R	0h	Reserved

Bit	Field	Туре	Reset	Description
24-20	TRIGSEL	R/W	0h	SOC1 Trigger Source Select. Along with the SOC1 field in the ADCINTSOCSEL1 register, this bit field configures which trigger will set the SOC1 flag in the ADCSOCFLG1 register to initiate a conversion to start once priority is given to it.
				00h ADCTRIG0 - Software only
				01h ADCTRIG1 - CPU1 Timer 0, TINT0n
				02h ADCTRIG2 - CPU1 Timer 1, TINT1n
				03h ADCTRIG3 - CPU1 Timer 2, TINT2n
				04h ADCTRIG4 - GPIO, ADCEXTSOC
				05h ADCTRIG5 - ePWM1, ADCSOCA
				06h ADCTRIG6 - ePWM1, ADCSOCB
				07h ADCTRIG7 - ePWM2, ADCSOCA
				08h ADCTRIG8 - ePWM2, ADCSOCB
				09h ADCTRIG9 - ePWM3, ADCSOCA
				0Ah ADCTRIG10 - ePWM3, ADCSOCB
				0Bh ADCTRIG11 - ePWM4, ADCSOCA
				0Ch ADCTRIG12 - ePWM4, ADCSOCB
				0Dh ADCTRIG13 - ePWM5, ADCSOCA
				0Eh ADCTRIG14 - ePWM5, ADCSOCB
				0Fh ADCTRIG15 - ePWM6, ADCSOCA
				10h ADCTRIG16 - ePWM6, ADCSOCB
				11h ADCTRIG17 - ePWM7, ADCSOCA
				12h ADCTRIG18 - ePWM7, ADCSOCB
				13h ADCTRIG19 - ePWM8, ADCSOCA
				14h ADCTRIG20 - ePWM8, ADCSOCB
				15h ADCTRIG21 - ePWM9, ADCSOCA
				16h ADCTRIG22 - ePWM9, ADCSOCB
				17h ADCTRIG23 - ePWM10, ADCSOCA
				18h ADCTRIG24 - ePWM10, ADCSOCB
				19h ADCTRIG25 - ePWM11, ADCSOCA
				1Ah ADCTRIG26 - ePWM11, ADCSOCB
				1Bh ADCTRIG27 - ePWM12, ADCSOCA
				1Ch ADCTRIG28 - ePWM12, ADCSOCB
				1Dh ADCTRIG29 - CPU2 Timer 0, TINT0n
				1Eh ADCTRIG30 - CPU2 Timer 1, TINT1n
				1Fh ADCTRIG31 - CPU2 Timer 2, TINT2n
<u> </u>				Reset type: SYSRSn
19	RESERVED	R	0h	Reserved

Table 11-33. ADCSOC1CTL Register Field Descriptions (continued)

Bit	Field	Туре	Reset	Description
18-15	CHSEL	R/W	0h	SOC1 Channel Select. Selects the channel to be converted when SOC1 is received by the ADC.
				Single-ended Signaling Mode (SIGNALMODE = 0):
				0h ADCIN0
				1h ADCIN1
				2h ADCIN2
				3h ADCIN3
				4h ADCIN4
				5h ADCIN5
				6h ADCIN6
				7h ADCIN7
				8h ADCIN8
				9h ADCIN9
				Ah ADCIN10
				Bh ADCIN11
				Ch ADCIN12
				Dh ADCIN13
				Eh ADCIN14
				Fh ADCIN15
				Differential Signaling Mode (SIGNALMODE = 1):
				0h ADCIN0 (non-inverting) and ADCIN1 (inverting)
				1h ADCIN0 (non-inverting) and ADCIN1 (inverting)
				2h ADCIN2 (non-inverting) and ADCIN3 (inverting)
				3h ADCIN2 (non-inverting) and ADCIN3 (inverting)
				4h ADCIN4 (non-inverting) and ADCIN5 (inverting)
				5h ADCIN4 (non-inverting) and ADCIN5 (inverting)
				6h ADCIN6 (non-inverting) and ADCIN7 (inverting)
				7h ADCIN6 (non-inverting) and ADCIN7 (inverting)
				8h ADCIN8 (non-inverting) and ADCIN9 (inverting)
				9h ADCIN8 (non-inverting) and ADCIN9 (inverting)
				Ah ADCIN10 (non-inverting) and ADCIN11 (inverting)
				Bh ADCIN10 (non-inverting) and ADCIN11 (inverting)
				Ch ADCIN12 (non-inverting) and ADCIN13 (inverting)
				Dh ADCIN12 (non-inverting) and ADCIN13 (inverting)
				Eh ADCIN14 (non-inverting) and ADCIN15 (inverting)
				Fh ADCIN14 (non-inverting) and ADCIN15 (inverting)
				Reset type: SYSRSn
14-9	RESERVED	R	0h	Reserved
8-0	ACQPS	R/W	Oh	SOC1 Acquisition Prescale. Controls the sample and hold window for this SOC. The configured acquisition time must be at least as long as one ADCCLK cycle for correct ADC operation. The device datasheet will also specify a minimum sample and hold window
				duration.
				UUUN Sample window is 1 system clock cycle wide
				001h Sample window is 2 system clock cycles wide
				UUZH Sample window is 3 system clock cycles wide
				 1EEb Sampla window is 512 system clask system wide
				Reset type: SYSRSn

Table 11-33. ADCSOC1CTL Register Field Descriptions (continued)