
Example of how to comment SE423 Lab/Homework Code. For Lab, lab partners could use both of their initials
You should submit your C file with the comments. Do not create a Word document like this example does.
This format for commenting does not have to be done for HW1 Question 1 (C review).
I made the initials Bold for emphasis. You do not need to bold your initials.

// Andy Jones is commenting this Code. Comments marked by my initials AAJ
//###
// FILE: LABstarter_main.c
//
// TITLE: Lab Starter
//###
#include <stdio.h>
#include <stdlib.h>
.... Omitted Code
.... You should not omit code in your submission, I am here so this commenting example fits on one page
....
uint32_t numTimer0calls = 0;
uint32_t numSWIcalls = 0;
extern uint32_t numRXA;
uint16_t UARTPrint = 0;
uint16_t LEDdisplaynum = 0;
float Kp = 3.4; // AAJ Kp and Ki gains used for the PI controller. Hand tuned for desired response.
float Ki = 29.3; // I did find that a number of gain combinations worked, but settled on these gains.
float Vref = 2.5;
float Vactual = 0;
float Ik = 0;
float Vout = 0;

void main(void)
{
 // PLL, WatchDog, enable Peripheral Clocks
 // This example function is found in the F2837xD_SysCtrl.c file.
 InitSysCtrl();
.... Omitted Code
.... You should not omit code in your submission, I am here so this commenting example fits on one page
....
 // Configure CPU-Timer 0, 1, and 2 to interrupt every second:
 // 200MHz CPU Freq, 1 second Period (in uSeconds)
 ConfigCpuTimer(&CpuTimer0, 200, 5000); //AAJ Set CPU Timer 0 to call its interrupt function every 5ms. This is the
 // specified sample rate for the control loop calculations.
 ConfigCpuTimer(&CpuTimer1, 200, 20000);
 ConfigCpuTimer(&CpuTimer2, 200, 40000);
.... Omitted Code
.... You should not omit code in your submission, I am here so this commenting example fits on one page
....
 // Enable global Interrupts and higher priority real-time debug events
 EINT; // Enable Global interrupt INTM
 ERTM; // Enable Global realtime interrupt DBGM

!!!! There is a second page !!!!!

 // IDLE loop. Just sit and loop forever
 while(1)
 {
 if (UARTPrint == 1) {
// AAJ Here I am using GPIO67 to see how much time the serial_printf function takes to run. In lab I will connect the Oscilloscope
// to GPIO67's pin and measure the width of the pulse created by setting GPIO67 high (3.3Volts) before the function is called and then
// setting GPIO67 low (0Volts) after the function is completed. GPIO67 is controlled by the GPC registers. GPIO67 is the 4th bit
// in the GPC registers. Bit 0 is for GPIO64 Bit 1 is for GPIO65, Bit 2 is for GPIO66, Bit 3 is for GPIO67, Bit 4 is for GPIO68 and so on.
// The below bitfield C statement hides the bit number from me and allows me to just set the associated bit pertaining to GPIO67.
// Setting a bit to 1 in the GPCSET register causes that associated output pin to be high (3.3 Volts).
// Setting a bit to 0 in the GPCSET register does nothing.
 GpioDataRegs.GPCSET.bit.GPIO67 = 1;

//AAJ Printing Desired and Actual Speed %.3f tells printf to print 3 decimal places of float variable
 serial_printf(&SerialA,"%.3f Desired Speed, %.3f Actual Speed\r\n",Vref,Vactual);
 UARTPrint = 0;
 // AAJ Set GPIO67 to low (0Volts) so Oscilloscope and see when serial_printf function is complete
 // Setting a bit to 1 in the GPCCLEAR register causes that associated output pin to be low (0 Volts). Setting a bit
 // to 0 in the GPCCLEAR register does nothing.
 GpioDataRegs.GPCCLEAR.bit.GPIO67 = 1
 }
 }
}

// cpu_timer0_isr - CPU Timer0 ISR
__interrupt void cpu_timer0_isr(void)
{
 Vactual = readfeedback(); // AAJ this is a dummy function for this example.

 // AAJ Here I am calculating the PI control law. I am using the "forward rule" to approximate the integral
 // Then I calculate the control effort Vout which is Kp times the error between desired speed and actual speed
 // and Ki times the integral appoximation of the error. I also check for integral windup and then saturate
 // the output between -10 and +10.
 Ik = Ikold + (Vref-Vactual)*0.005;
 Vout = Kp*(Vref-Vactual) + Ki*Ik;

 if (fabs(Vout) > 10) Ik = Ikold;
 if (Vout > 10) Vout = 10;
 if (Vout < -10) Vout = -10;

 outPWM(Vout); //AAJ dummy function to output control

 Ikold = Ik; //AAJ save past state for next 5ms

 CpuTimer0.InterruptCount++;

 numTimer0calls++;

 if ((numTimer0calls%20) == 0) {
 UARTPrint = 1; //AAJ Print to Tera Term every 100ms 5ms * 20 = 100ms

 // Blink LaunchPad Red LED
 GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1;
 }

 // Acknowledge this interrupt to receive more interrupts from group 1
 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
}
.... Omitted Code
.... You should not omit code in your submission, I am so this commenting example fits on one page
....

