

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

Autonomous Robots 4, 121–135 (1997)
c© 1997 Kluwer Academic Publishers. Manufactured in The Netherlands.

Decentralized Motion Planning for Multiple Mobile Robots:
The Cocktail Party Model∗

V.J. LUMELSKY AND K.R. HARINARAYAN
University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

Abstract. This paper presents an approach for decentralized real-time motion planning for multiple mobile robots
operating in a common 2-dimensional environment with unknown stationary obstacles. In our model, a robot can
see (sense) the surrounding objects. It knows its current and its target’s position, is able to distinguish a robot from
an obstacle, and can assess the instantaneous motion of another robot. Other than this, a robot has no knowledge
about the scene or of the paths and objectives of other robots. There is no mutual communication among the robots;
no constraints are imposed on the paths or shapes of robots and obstacles. Each robot plans its path toward its
target dynamically, based on its current position and the sensory feedback; only the translation component is consi-
dered for the planning purposes. With this model, it is clear that no provable motion planning strategy can be designed
(a simple example with a dead-lock is discussed); this naturally points to heuristic algorithms. The suggested strategy
is based on maze-searching techniques. Computer simulation results are provided that demonstrate good performance
and a remarkable robustness of the algorithm (meaning by this a virtual impossibility to create a dead-lock in a
“random” scene).

Keywords: mobile robots, autonomous agents, decentralized intelligence, robot motion planning

1. Introduction

We address the problem of decentralized control and
motion planning for multiple mobile robots operating
in a common planar environment, perhaps among sta-
tionary obstacles. Robots and obstacles may be of ar-
bitrary shape. The task of each robot is to reach its
target position. A robot plans its motion based on the
local information from its sensors (say, vision or range
finders) and on its planning algorithm. There is no di-
rect communication between the robots—effectively,
each one is a moving obstacle for other robots. A robot
has no knowledge about other objects in the scene until
it sees them.

This is quite similar to the situation one faces in a
crowded place, such as a cocktail party—hence the
nameThe Cocktail Party Model. When a guest de-
cides to talk to someone, he accomplishes this by

∗Supported in part by the National Science Foundation Grant
IRI-9220782.

maneuvering between tables, chairs, and other guests,
planning his path “on the fly” and not consulting with
other people about his or their intended motion. He as-
sumes that other people mean well, and so as long as
he somehow takes into account their movements, it is
safe to move at a minimal distance from them. If, on the
other hand, one of the guests does not fit this assump-
tion (“Is he drunk?”), one will increase the safety mar-
gin distance when passing this person. Applications
that fit this multi-agent model include mobile robots in
large assembly plants and automated factories (e.g., au-
tomatic paper roll carriers in a paper mill), specialized
assembly systems (Scheinman, 1987), military tasks,
and intelligent highway control systems.

Two obvious approaches to motion planning in
multi-agent systems are thecentralizedanddecentral-
ized(distributed) approach. Both have their pros and
cons. The usual scheme for centralized control has its
rationale in the factory floor tasks: in it, a central
planner designs the motion plan for all robots based
on full knowledge about the environment. Only after

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

122 Lumelsky and Harinarayan

the complete paths have been computed, the actual
motion takes place. The approach fits better purely
computational problems rather than tasks that rely on
real-time feedback control. Its obvious advantage is its
conceptual simplicity: since everything is known, any-
thing can be computed, including the optimal (shortest,
smoothest etc.) trajectories for all agents. The price
for this convenience is computational bottlenecks. The
amount of computations quickly grows with the num-
ber of agents, and is likely to become unwieldy in a
task with 4–6 robots. Since planning is done off-line,
complete recalculation of paths is required if one of
the robots’ objectives are altered or if the environment
changes.

Decentralized control has two obvious advantages:
(i) It breaks the computational bottleneck of central-
ized control; in principle, computational complexity of
a decentralized system can be made independent of
the number of agents in it. (ii) It is inherently more
stable and robust: it can tolerate changes and uncer-
tainty; a failure of one or few agents does not kill the
whole system. On the negative side, the decentralized
control is inherently incapable of delivering optimal
performance: since at any moment each agent is lack-
ing some information, optimality is ruled out. Instead,
a reasonable, acceptable performance is sought. The
main question posed in this work is whether decentral-
ized motion planning can deliver good performance in
a reasonably complex system. The answer seems to be
“yes”.

Most of the literature on multiple robot motion plan-
ning is devoted to the centralized approach. Efforts
tend to concentrate on decreasing the computational
cost. This is typically achieved at the expense of com-
pleteness (which may be acceptable in some applica-
tions). In Kant and Zucker (1986) the task is divided
into two subtasks. First, each robot’s path is deter-
mined taking into account only stationary obstacles.
With the paths fixed, velocities of all the robots are
then adjusted so as to avoid collisions. In Erdmann
and Lozano-Perez (1987) priorities are assigned to
each robot and planning is done for one robot at a
time: each robot’s path is planned in the three dimen-
sional space-time configuration space taking into ac-
count the stationary obstacles as well as the motion of
the robots with a higher priority. A scheme based on
priorities and attempting to maximize the number of
robots traveling in a straight line has been considered
in (Buckley, 1989). All these are heuristic algorithms,
in the sense that they cannot guarantee the robot will

find a path if one exists, or prove that there is no path
if true.

Considerable research has been done in the area of
provably correct algorithms. AnO(n3) algorithm for
planning the motion of two disks in a polygon-filled
scene, and anO(n13) algorithm for planning the mo-
tion of three disks have been presented in Schwartz
and Sharir (1983), wheren is the number of sides of
the polygonal obstacles in the environment. In general,
such algorithms are polynomial in the complexity of the
obstacles and exponential in the number of disks. For
an enclosed space, using the idea of retraction,O(n2)

and O(n3) algorithms have been devised for the mo-
tion of two and three disks respectively (Yap, 1984). In
(Spirakis and Yap, 1984) the problem of moving many
disks among polygonal obstacles has been shown to
be NP-hard. Coordinating the motion of an arbitrary
number of rectangles which can only translate in a rect-
angular two-dimensional region has been shown to be
PSPACE-hard (Hopcroft et al., 1984).

The decentralized approach is based on themodel
with incomplete informationand assumes no central
planner. Each agent acts independently, planning its
path based on its goal and on local and limited global in-
formation. The latter typically comes via sensory feed-
back (e.g., from ultrasound sensors, a range finder,
or a camera), and the path is planned dynamically
in real time. An ideal decentralized strategy would
require no direct communication between the robots,
while ensuring collision avoidance and minimal inter-
ference of each robot with the purposeful motion of
the other robots. The algorithmic methodology here
makes use of maze-searching techniques (Lumelsky
and Stepanov, 1987; Abelson and diSessa, 1981).

Examples of decentralized motion planning in multi-
agent systems—say, in the crowded cocktail party
above, or with automobiles on a highway—suggest that
even when there is no direct communication, usually
there is a kind of shared expectation of a “reasonable be-
havior” that agents use as a guideline in their planning
strategies. For example, in Tournassoud (1986) such
shared information appears in the guise of separating
lines between robots, to ensure collision avoidance.

We formulate the problem as one of maze searching,
albeit in a dynamically changing “maze”. The empha-
sis is on formal algorithmic issues of decentralized con-
trol, on a dynamically changing environment, and on
objects of arbitrary shapes. One standard question in
maze-searching algorithms is that of convergence: if a
path between starting and target positions does exist,

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

Decentralized Motion Planning 123

we would like the algorithm to guarantee finding one.
Interestingly, while this is possible for one body mov-
ing among stationary objects, or for centralized plan-
ning, it is not feasible in the context of decentralized
control (see Discussion).

To our knowledge, the seemingly natural idea of ex-
tending the methodology of sensor-based motion plan-
ning to decentralized control has not been explored in
literature. Given this emphasis, some relevant issues
are not discussed in this text:

(i) No connection is made to learning and collective
behavior (Mahadevan and Connell, 1992; Mataric,
1994). Note that learning has little meaning in case
of moving objects—they won’t be there next time
around. It could make sense for stationary objects
though; note, however, that our model’s allow-
ing objects to be of arbitrary shapes, while adding
power to the algorithm, makes learning problem-
atic since storing arbitrary shapes requires, in prin-
ciple, infinite memory.

(ii) We assume perfect sensing and precise knowledge
of the robots’ and their targets’ positions (see a
discussion about the issue of uncertainty in real
sensory data in Section 6).

We make use of a simple mechanism of “reasonable
behavior”: when maneuvering to avoid a potential col-
lision, each robotRi assumes that other robots will try
to avoid collisions as well. More specifically, when ac-
counting for an approaching robot(s),Ri plans its next
step so as not to cross an invisible boundary that sepa-
rates the “safe areas” of the two robots. Two alternative
mechanisms for such a boundary are suggested—the
Voronoi diagram (Preparata and Shamos, 1985) and
the perpendicular bisector to the line of minimum dis-
tance betweenRi and the other robot. In other words,
although the motion and sensing parameters (veloci-
ties, the step size, sensing range etc.) may differ widely
from robot to robot, each robot can safely assume that
the other robots operate under the same “civilized”
strategy.

Although the suggested approach makes use of a
provably correct motion planning algorithm (Lumelsky
and Stepanov, 1987), it is heuristic in nature. This
means, for example, that a robot may fail to find a path
to its destination even if one exists (one such example
is discussed in Section 6). It is important to note that
this lack of guaranteed convergence is not the result
of a weak algorithm: as long as the agents’ decision-
making processes are independent, provably correct

algorithms are not feasible. What is interesting is that
the algorithm that emerges exhibits remarkable robust-
ness in complex scenes. As used here, the term “ro-
bustness” means that, short of degenerate examples in
which all robots’ paths must be carefully coordinated
in a centralized fashion, it is virtually impossible for
a robot not to reach a reachable target under the sug-
gested algorithm (Section 6).

The remainder of the paper is arranged as follows:
the model of the robot and the environment are intro-
duced in Section 2. Details of the approach are de-
veloped in Section 3. The final algorithm is presented
in Section 4, followed by examples of its operation in
Section 5 and a discussion of the performance issues
in Section 6.

2. The Model

The environment (the scene) is a plane; it is popu-
lated byobjects. An object’sboundaryrepresents its
shape and is a simple closed curve of finite length. No
constraints are imposed on an object’s shape. (What
makes this happy generality possible is that the obsta-
cle boundary needs not be represented for the planning
purposes, and thus requires no representation scheme,
since at any instance a robot will deal with only a tiny
part of the boundary.) Objects can be of two types—
they are either stationaryobstaclesor mobile robots,
Fig. 1(a). The correspondingconfiguration space(C-
space) of a robot is the space of the robot’s translation
variablesx and y; it can be obtained by reducing the
robot to a point and then growing the other objects in
the scene accordingly.

Each robot has means for acquiring input infor-
mation and planning its motion. For generality, we
assume that those are specific for each robot (this
may correspond to different motors, sensors, sampling
rates). The motion control and sensing models are as
follows.

Motion Control. A robot is capable oftranslation
only. The reason for this important assumption is
simple—it reduces the planning problem to a two-
dimensional, rather than three-dimensional, C-space.
This may be unacceptable in some applications and
acceptable in others. For example, in tasks where
the robots can be considered roughly circular, or
where passages between obstacles are wide enough,
robot’s steering (rotation) control would be indepen-
dent of the global path planning algorithm, and so a

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

124 Lumelsky and Harinarayan

Figure 1. (a) An environment with mobile robotsR1, . . . , R4 and stationary obstaclesO1, . . . , O3. Ti is the desired target location of robotRi .
(b) The scanning operation: robotR is equipped with range sensors which operate within the sensing radiusrv . The robot can see only portions
V1 andV2 of objectsO1 andO2; Vj thus form thevisible objectsfor R.

two-dimensional model would be adequate. As is usual
in computer controlled systems, planning and control
are done in small steps defined by the robot’s sampling
rate, resulting in continuous motion. Typical sampling
rates (e.g., in commercial mobile robots) are in the
range 20 to 50 per second. Accordingly, each robot
Ri is said to move in discrete steps ofstep size si .
Step sizes may differ from robot to robot,si 6= sj .
A step cycle ti of robot Ri is the (constant) time it
takes Ri to perform sensing, planning and physical
execution of a single step1. Step cycles may differ,
ti = ktj , i 6= j , k—integer. For example, if the sam-
pling rate of robotRi is 20 (that is,ti = 50 msec)
and the robot’s velocity is 1 m/sec, then it’s step size
si = 5 cm.

Given the Start (S) and Target (T) positions of robot
R, its desirable path toT , called the main line orM-line,
is defined as the straight line connectingSandT . In our
algorithm the robot will move along its M-line towards
its target until it is forced off the M-line due to a poten-
tial collision with an object. The latter may be a station-
ary obstacle, another robot, or a combination of both.
The point where the robot abandons the M-line is called
thehit point, H. A local direction, either left or right,
determines the direction for passing around an object;
it is decided upon beforehand. When a robot is passing
around an object in a given local direction, it is said to
befollowing its boundary. The object whose boundary
the robot is following is called thecontact object. The
leave conditionis the condition which, when satisfied,
causes the robot to abandon the object whose boundary
it has been following and resume its course towards its

target. The distance betweenR and objectOj during
the boundary following is chosen independent of the al-
gorithm, based on such parameters as the robot’s step
size, the expected motion ofOj , and the desired safety
margin.

Input Information. Robot input information comes
from its sensors. RobotR is said tointeractwith a visi-
ble objectVj if Rcan potentially collide withVj within
the current step cycle. Given our emphasis on formal
algorithmic issues—the topological/geometric control
scheme, convergence, completeness—we assume per-
fect sensing and accurate position information; no
sensor inaccuracies are considered (a rather com-
mon liability in algorithmic work, see e.g., (Erdmann
and Lozano-Perez, 1987; Schwartz and Sharir, 1983;
Hopcroft et al., 1984), and also a discussion in
Section 6).

Given the continuously changing world they live in,
the robots will not attempt to build maps or maintain
other large pieces of data that they acquire during their
motion. Each robot’s input information includes:

— its current coordinates and those of its target,
— the value ofstep upper bound smax for all other

robots,
— the current sensing information.

Current Coordinates (current position) of the robot
are the corresponding cartesian coordinates of one
of its points—say, the center of mass. At a given
instantt , Ct is the robot’s current position.

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

Decentralized Motion Planning 125

Step Upper Bound, si
max (or simplysmax) is a prede-

fined value known to each robotRi beforehand: it is
the upper bound of the maximum distance that any
other robotRj , j 6= i , can cover in any direction
within the step cycleti . Note thatsi

max may differ
from robot to robot, and that it may correspond to
more than one step of robotRj . The notion of the
step upper bound represents the idea of a “reasonable
behavior” mentioned above: in order to guarantee
safe operation in an environment with other moving
robots, each robot needs some expectation about the
motion of the other robots it may encounter in the
scene. In other words, whenever robotRi sees an-
other robotRj , although it does not knowRj ’s objec-
tives or step size, it assumes thatRj ’s displacement
within the cycle timeti will be no more thansi

max.
Sensing. Each robot is equipped withrange sensors

which are capable of:

• Measuring distances to any objects within the robot’s
range of sensing rv (stands for “radius of vision”);
rv may differ from robot to robot.

• Performing ascanning operationso as to construct
an outline of the portions of the objects within its
range of sensing and arriving at the set ofvisible
objects Vj , see Fig. 1(b).

• Distinguishing between a robot and a (stationary)
obstacle, and between two robots.

• Measuring theinstantaneous velocityof any other
robot within the robot’s sensing range.

Two comments on the sensing capabilities:

1. The physical devices that provide these sensing ca-
pabilities are not discussed here. For example, dis-
tinguishing between a stationary object and a robot
may be tricky; this capability is necessary, though,
and is common in nature: confusing a building with
a truck that happen to stand still at the moment
would be dangerous for a robot, as it would be for
a human.

2. The need to measure instantaneous velocity of mo-
ving objects is quite basic: it comes from the na-
ture of the problem rather than from the algorithm
requirements. To pass around moving objects, one
needs to assess their velocity. The reason this ability
is not common in robotics is that until now roboti-
cists rarely considered dynamically changing envi-
ronments and decentralized planning. Just about all
creatures in nature have this ability, and so do some
technical systems (odometers, radars).

3. The Approach

Overview. Our algorithm will make use of maze-
searching techniques. With those, a point robot can
purposely move in an unknown environment with sta-
tionary obstacles. There is a number of such algorithms
available (see, e.g., (Lumelsky and Stepanov, 1987;
Abelson and diSessa, 1981)); in principle, any one
can be used for our purpose. For specificity only, we
use below the algorithm called Bug2 (Lumelsky and
Stepanov, 1987). DefineST as the M-line; define the
local direction (left or right); briefly, Bug2 works as
follows:

1. Move along the M-line until one of the following
happens:

(a) T is reached. The procedure stops.
(b) An obstacle is encountered. Go to Step 2.

2. Using the accepted local direction, follow the
obstacle boundary until one of these occurs:

(a) The robot meets the M-line at a point between
H andT that satisfies the leave condition. Go
to Step 1.

(b) The condition of target non-reachability is
satisfied. The procedure terminates.

In our multi-robot case, the procedure that each robot
uses is similar to Bug2. Each robot moves towards its
target along a straight line until it encounters an ob-
ject (another robot or an obstacle). It then follows the
boundary of the object in the local direction until a
certain leave condition is satisfied, and then resumes
its course towards the target. However, since the envi-
ronment is dynamic in nature, the following additional
considerations have to be taken into account:

• In order to ensure collision-free motion, a relation-
ship between the robot’s step size and its range of
sensing needs be established. It is clear, for exam-
ple, that the robot should not make a step that would
take it outside its range of sensing. Details of this
relationship are examined in the next section.

• When robotsRi and Rj meet, each one has no in-
formation about the objectives or the step size of the
other. Some protocol is therefore needed that robots
could count on when trying to pass around each other
and avoid collision. One possibility could be a be-
forehand agreement on the direction, left or right,
of passing each other during the encounter. When
walking toward each other, two people could avoid

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

126 Lumelsky and Harinarayan

collision by each stepping, say, to his left, and then
continuing the path. Unfortunately, this mechanism
loses consistency in the interaction of more than two
robots. The use of hyperplanes between the robots
(Tournassoud, 1986) would be another alternative for
the protocol, but it is applicable only to convex robots
and pairwise interaction. Two possible mechanisms
described in Section 3.3 make use of the perpendicu-
lar bisector and the Voronoi diagram (Preparata and
Shamos, 1985), respectively, and allow many robots
to interact simultaneously and pass around each other
in a meaningful manner and collision-free.

• It will be shown in Section 3.4 that the leave condi-
tion used in the Bug2 algorithm—meeting the M-line
between pointsH andT—is not adequate for a dy-
namic environment. Accordingly, a new condition
based on adynamic M-lineis introduced, and a pro-
cedure for M-line modification is developed.

3.1. Constraint on the Step Size

In sensor-based motion planning, irrespective of the na-
ture of the environment (static or dynamic), the main
local information available to a robot for planning its
motion is the data coming from its sensors. This means
that in order to guarantee its safety the robot has to con-
fine its step to some limited area within which it has
complete knowledge. There is a simple relationship be-
tween the sensing range, the step size of the robot, and
the expected motion of other robots within a single step
cycle, that should be taken into account when planning
collision-free motion. Starting with the simple case of
stationary obstacles, the step sizes of the robot must
satisfy the condition:

s ≤ rv (1)

The constraint is apparent from the fact that if the
robot makes a step outside of its sensing range, it risks
a collision with an obstacle it currently cannot sense. It
is easy to see that condition (1) is not adequate if the en-
vironment includes moving objects. A better condition
for this case, which is independent of the motion plan-
ning algorithm used, is given by the following simple
statement.

The constraint is apparent from the fact that the robot
cannot plan for obstacles that it has not sensed: making
a step outside of the robot’s range of sensing could
lead to a collision. It is easy to see that condition (1) is
inadequate if the environment includes moving objects.

A better condition for this case, which is independent
of the motion planning algorithm used, is given by the
following simple statement:

Lemma. For robot R to guarantee collision-free
motion in an environment with moving objects, it is
necessary that the following inequality be satisfied:

s ≤ rv − smax (2)

where smax is the step upper bound on the other moving
objects within the step cycle of robot R.

Proof: Assume for a moment thats> rv − smax, and
assume a (minimum) distance,dmin = s + smax, be-
tween robotR and some moving object whose step
size issmax. Sincedmin > rv , the robot will not sense
the object and will not account for it while planning
its next step. If the robot and the object were to take
steps towards each other so as to minimize the distance
between them at the end of the step, a collision could
result. Similarly, note that ifs< rv − smax, a collision
with an object that is not visible at the robot’s cur-
rent position will never take place within a given step
cycle. 2

3.2. Boundary Following

If robot R is interacting with a visible objectVi , and
Vi , is a stationary obstacle, then following its boundary
in a given direction is a trivial operation. If, however,
Vi is a robot, then robotR has no information about its
step size or intended motion, and so the boundary to be
followed is not defined.

Although robotRcannot predict the motion of object
Vi precisely, it can estimate all possible motions that
Vi can make withinR’s one step cycle. The estimate
is based on the fact that the maximum step size of any
object issmax. The area formed by taking into account
all possible motions of objectVi defines itscollision
front. The collision frontEi of Vi represents the union
of all possible movesVi can make within a given step
cycle. Given a robotR and a set of visible objects
{Vi } in its sensing range, the method of constructing
the corresponding collision frontE is as follows (see
Fig. 2):

1. With the collision frontEi obtained for each visible
objectVi separately, the final collision frontE is the
union of all individual fronts,E = ∪Ei . Let dmin

be the minimum distance betweenR andVi .

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

Decentralized Motion Planning 127

Figure 2. Construction of a collision front: (a) robotR1, whose radius of vision isrv , detectsR2, (b) V is the portion ofR2 that is within the
range ofR1. G is V grown bysmax in all directions, (c) perpendicular bisector method:P is the perpendicular bisector drawn to the line of
minimum distancedmin. S is the robot’s side of the semi-plane formed byP. The collision front (shaded) isE = G − (G ∩ S), (d) Voronoi
diagram method:P represents the Voronoi curve betweenR1 andV (any point onP is equidistant toR1 andV). S is the robot’s side of the
semi-plane formed byP. The collision front (shaded) isE = G − (G ∩ S).

2. If objectVi is an obstacle, then depending ondmin

do one of the following:

(a) If dmin > s, thenEi = φ: that is,Vi is too far
off to affect robotR, and is ignored.

(b) If dmin ≤ s, thenEi = Vi .

3. If objectVi is a robot then depending ondmin do one
of the following:

(a) If dmin > s + smax, thenEi = φ: Vi is ignored
as it is too far off to affect the robot.

(b) If dmin ≤ s + smax, then growVi by smax in all
directions, to obtain the “grown” regionGi , see
Fig. 2(b). RegionGi thus represents the worst
case of all possible motionsVi can make. How-
ever, if what we called a “reasonable behavior”
and a corresponding protocol is assumed, re-
gion Gi can be further reduced so as to give
R more latitude for motion. Note that such

a protocol assumes a prior agreement and re-
quires no explicit communication between the
robots. Two procedures for reducing areaGi are
considered:

The Perpendicular Bisector Method:
Let P be the perpendicular bisector of the line
of minimum distance betweenR andVi divid-
ing the workspace into two semi-planes. Let
S be the robot’s side semi-plane of the bisec-
tor P. The portion ofGi in S, Gi ∩ S, is then
excluded fromGi to obtain the collision front
Ei , Ei = Gi − (Gi ∩ S), see Fig. 2(c). (For
nonconvex objects, a more complex recursive
procedure would be needed).

The Voronoi Diagram Method: Given a
robot R and a visible objectVi , the Voronoi di-
agram presents a skeletonP, a curve defined
by the locus of points equidistant toR andVi ,
see Fig. 2(d). As in the perpendicular bisec-
tor method, the Voronoi curveP divides the

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

128 Lumelsky and Harinarayan

workspace into two generalized semi-planes,
and the portion ofGi on the robot’s side of
P is excluded fromGi to obtain the collision
front Ei , Ei = Gi − (Gi ∩ S). The Voronoi
diagram of the set(R, Vi) is unique (Preparata
and Shamos, 1985).

Due to its simplicity, the calculation of the colli-
sion front carries low computational burden and can
be easily done in real time. In applications the proce-
dure can be simplified even further: at every step only
the small area of the collision front around the robot’s
position is contemplated for the next step. In the al-
gorithm, after defining the collision frontE, the robot
will follow the boundary of E. Since the described
method for constructing the collision front guarantees
that no collisions take place (as no candidate locations
for two robots can overlap), this assures collision-free
motion. As the environment is dynamic, the collision
front computation is done at every step.

3.3. The Leave Condition

The leave condition for the Bug2 algorithm requires the
robot to meet its M-line at some point betweenH and
T (Lumelsky and Stepanov, 1987). In a dynamic envi-
ronment, however, this leave condition in general will
not work. While following the boundary that is shift-
ing in time, the robot may be “dragged” away from the
M-line and never meet it again, causing the robot to
go around the boundary indefinitely, see Figs. 3(a) and
(b). In order to overcome this problem of losing the
M-line, we introduce the notion of adynamic M-line.
Namely, when a hit pointH is defined at a contact ob-
jectV , the M-line is re-defined as the lineHT . Since the
robot is capable of measuring the instantaneous velo-
city of the objectV , at every step the robot compensates

Figure 3. The argument for a dynamic M-line: (a) while moving fromS to T , a point robotR (shown as a small black disc) encounters object
V . After defining the hit pointH , R starts moving aroundV using left as the local direction, (b) whileR is going aroundV , V moves to the
new position. Under the Bug2 algorithm, this would causeR to go aroundV indefinitely without ever meeting the M-line. Dynamic M-line:
(c) at each step, pointH (and thus the M-lineHT), is shifted by the corresponding vector traversed byV within this step, (d) eventuallyR
meets the current lineHT and proceeds towardsT . (The entire path is not shown.) For the sake of simplicity, direct contact betweenR andV
is shown.

for the motion of V by shifting (the invisible but
known) H by the corresponding distance traversed by
V , see Fig. 3(c). The hit pointH can be thought of
as being “attached” to the objectV at the first point
of contact. The M-line is re-defined asHT at every
step.

Another problem that arises due to the dynamic na-
ture of the environment is that two objects that are si-
multaneously in contact with robotR may split later,
causing the robot to go into an infinite loop, as il-
lustrated in the example in Fig. 4. In this case the
C-space representation of the obstacle that the robot
is following is altered without the robot being aware
of it. To overcome this difficulty, the robot defines a
new hit point every time it meets a new contact object
(which it recognizes using its ability to distinguish be-
tween a robot and a stationary obstacle, and between
two robots). These rules for modifying hit points are
summarized in the next section.

3.4. Modification of the Hit Point

The rules for modifying the hit pointH apply only
to the case when the contact object(s) (or, rather, the
collision front) whose boundary robotR is following
at the time involves at least one moving object, that is
another robot. No modification is needed otherwise.
At a given step, the rules are as follows:

1. When passing around a robotRi , move H by the
distance traversed byRi during one step; define the
M-line as M-line= HT .

2. When switching contact from a robot to a station-
ary obstacle or from a stationary obstacle to a robot,
use the current positionC to define the new hit
point H = C, and define the M-line as M-line=
HT .

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

Decentralized Motion Planning 129

Figure 4. In this example, an attempt to follow a fixed M-line would result in an infinite loop, (a) in the workspace, robotR tries to reach its
targetT from S. ObjectO1 is a stationary obstacle, objectO2 is a mobile robot. After encounteringO1 andO2, R uses the local direction left
to negotiate around them, (b) the C-space representation ofO1 andO2; here, robotR becomes a point, andO1, O2 grow accordingly and are
‘fused’ together, appearing as a single obstacle, (c) onceR loses contact withO2, the latter moves away thus ‘splitting’ the C-space obstacle
into two. As a result,R goes aroundO1 indefinitely as it is unable to reach the M-line, (d) the C-space representation ofR continually looping.
Again, direct contact betweenR and obstacles is shown for simplicity.

4. The Algorithm

We are now ready to formulate the final algorithm
for sensor-based motion planning in an environment
with multiple mobile robots. The algorithm consists
of two procedures, one covering the motion along the
M-line (Step 1), and the other for moving off the M-line
(Step 2). All robots execute the algorithm in parallel,
independent of each other. Assume that initially robot
R is at pointS, C = S(Current position= Start), and it
attempts to reach pointT . Set the M-line ofR asCT.

1. Move along the M-line until one of the following
occurs:

(a) T is reached. The procedure stops.
(b) Object(s)Oi appears within the robot’s range

of sensing. If the collision front isE = φ or if
the next intended position of robotR is outside
of E, iterate this step. Otherwise, turn in the
local direction to follow the object’s boundary,
and go to Step 2.

2. At every step, follow the boundary of the colli-
sion front, while modifying the hit pointH and the
M-line according to the rules of Section 3.5, until
one of the following occurs:

(a) T is reached. The procedure stops.
(b) The robot meets its M-line within the segment

HT satisfying the leave condition (Section 3.4).
Go to Step 1.

(c) The robot loses contact with the boundary,
E = φ. Set the M-line= CT. Go to Step 1.

5. Examples

The computer simulations shown below have been car-
ried out in real time. That is, after one creates the robots,
the scene (obstacles), and indicates the intended target
positions, one presses the button, and the whole an-
imation of the motion unfolds in front of one’s eyes.
Given the complexity of these examples, the feasibility
of real-time computation is remarkable. The source of

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

130 Lumelsky and Harinarayan

Figure 5. Example of the algorithm performance. While attempting to reach their target positionsT1, T2, robotsR1 andR2 have to negotiate
their paths around each other, and possibly around stationary obstaclesO1 and O2. Each robot has very “myopic”, short range sensing:
(a) starting configurations and intended paths, (b), (c) intermediate positions, (d) final positions.

this high performance is in the algorithm’s exploiting
the advantage of the decentralized control—only local
data processing is done.

Given the nature of computer simulation, the task
and robot parameters defined in Section 2—step sizes
si andsmax, radius of visionri , step cycle timeti , ob-
ject dimensions, distances in the scene—are relative
values. For “myopic” sensing (e.g., Fig. 5), the step
size has been such as to fit 2–3 steps intorv; in the
case of better sensing (see e.g., the relative size of the
sensing range in Fig. 6), it corresponded to 10–20 steps
perrv. The sensing ranges tested varied widely; those
shown seem to be realistic enough—in Fig. 5 it would
correspond to a short-range infrared proximity sensor,
in Fig. 6—to a sonar or laser range sensor. The cycle
time varied widely as well, including more realistic 10
to 30 cycle/sec rates.

In the first example, Fig. 5, two robots operate in
an environment with two stationary obstacles. Both
robots have a very short sensing range. Figure 5(a)
shows the robots in their starting positions. The line
connectingSi and T i is the desired path (the initial
M-line) of robot Ri. Right before the situation shown
in Fig. 5(b), the robots see each other (not necessar-
ily simultaneously) and attempt to pass around each
other using left as the local direction. This turns out
to be impossible because of the stationary obstacles
O1, O2, and both robots embark upon rather long de-
tours, Fig. 5(c). [Clearly, some coordination between
the robots would help here.] The resulting paths are
shown in Fig. 5(d).

Figure 6 shows what happens in the same environ-
ment when the robots are enabled with better sensing.
The sensing ranges forR1, R2 are shown by the two

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

Decentralized Motion Planning 131

Figure 6. Same example as in Fig. 5, except both robots have a better sensing; the sensing ranges forR1, R2 are shown by the two bars, 1
and 2, respectively. Note the improvement in the path length performance compared to Fig. 5.

bars on the left, 1 and 2, respectively. The situation
becomes more complex: both robots see each other
much in advance, and for a while do not see a need
to change their paths. Then, sometime before the sit-
uation shown in Fig. 6(b),R1 infers thatR2 will be
blocking its path toT1, and embarks upon a detour
aroundO1; this clears way forR2 which continues
along its path, Fig. 6(c). Note that the resulting paths,
Fig. 6, are smoother, shorter, and quite different from
those in Fig. 5.

Examples shown in Figs. 7 and 8 are more com-
plex. Five robots,R1, . . . , R5, operate in an environ-
ment with three stationary obstaclesO1, O2, O3. In
Fig. 7 all robots have very short sensing range; their
velocities differ from each other; robotsR1, . . . , R4
are of simple geometric shape,R5 has a more complex
nonconvex shape. Each robot has no information about

other robots and obstacles until it senses them. Robots
do not store their paths or outlines of other objects that
they encounter—only very limited information, such
as recent intersection points between the paths and ob-
jects is stored (see Section 3).

Given the multiplicity of objects in the scene, in-
tended paths, and robots’ inferior sensing, Fig. 7(a),
mutual interference involving combinations of obsta-
cles and robots is likely. Indeed, intersections between
the intended paths lead to a temporary crowding in the
middle of the scene, Fig. 7(b). RobotsR3 and R4
are first to finish their motion, Fig. 7(c). Figure 7(d)
shows the complete paths, with the robots in their final
destinations.

Figure 8 relates to the same set of objects and tasks,
except the robots have better sensing: the sensing
ranges for robotsR1, . . . , R5 are shown by the bars

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

132 Lumelsky and Harinarayan

Figure 7. An example with five robots,R1, . . . , R5, operating in an environment with three stationary obstacles,O1, O2, O3. The robots are
capable of only simple very short range sensing.Si andT i are the robotRi start and target positions: (a) starting configuration and the intended
paths; (b), (c) intermediate positions; (d) final configuration.

on the left, 1 through 5, respectively. With the bigger
radius of sensing here, each robot has more information
in advance, and so the likelihood of crowding is re-
duced. Paths become smoother, and also more com-
plex, in the sense that it is often hard to understand the
“rationale” behind the planning decisions. Note that
as long as some information is still missing, although
better sensing does on the average result in better paths,
it cannot guarantee it: for example, the path of robot
R4 turned out to be shorter when it had “myopic” sens-
ing, Fig. 7(d), than when it had a wider sensing range,
Fig. 8(d).

6. Discussion

The problem of multi-robot decentralized motion plan-
ning is formulated in this work as a maze-searching
problem, albeit in a dynamically changing “maze”.
There is no communication between the robots; each
of them knows about the other(s) only when it sees
it. The main emphasis is on the algorithmic issues of
decentralized decision-making. Consequently, as men-
tioned before, a number of multi-agent control issues,
such as learning or collective behavior, are not being
addressed; also ignored are real life uncertainties of

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

Decentralized Motion Planning 133

Figure 8. Same example as in Fig. 7, except all five robots are provided with better sensing; their sensing ranges are shown by the bars on the
left, 1 through 5, respectively. Note the complexity of the interaction in this decentralized system.

input information—we assume precise knowledge of
robots’ and their target’ positions, and perfect sensing.

Real physical sensors being what they are, they are
of course a source of various errors. Some of those de-
pend on the technology used; some may accumulate
with time—as e.g., in registration systems based on
dead reckoning; some may depend on the robot’s sur-
roundings and position in space—e.g., compass read-
ings get worse near iron masses. Proper handling of
those errors in a real system is very important. Note,
however, that the necessary measures are likely to be
independent of and can be separated from the planning
algorithm design process. For example, if the error in
distance reading is within 3 robot steps, it would be

logical to use a safety margin that is at least 3 steps
wide. A more complex example with a real physical
system can be found in (Cheung and Lumelsky, 1989).

The two examples in Section 5 have been simulated
on one computer, in real time, producing an animated
“movie”. Given the decentralized character and inde-
pendent decision-making, the same software could be
used to simulate the operation on multiple computers,
one per simulated robot, or to implement motion plan-
ning on real robots. Given this parallelism, although
from our standpoint the second example is more com-
plex than the first, from the standpoint of each robot
the computational complexity in both examples is the
same.

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

134 Lumelsky and Harinarayan

Figure 9. A pseudo three-dimensional presentation of the situation shown in Fig. 8d.

Figure 10. Here, in order for the circular robotsR1 andR2 to reach their respective targets, their relative positions need to be switched. The
only way to do so is to moveR2 into one of the ‘wedges’ and then moveR1 through the other wedge. With decentralized motion planning this
is clearly a futile task, as advance information about the wedges and close coordination are necessary to execute the task.

This advantage of decentralized motion planning is
also the source of its drawback—in spite of the fact that
the underlying maze-searching algorithm does guaran-
tee convergence, it cannot be guaranteed anymore for
our multi-agent algorithm. As mentioned before, the
loss of convergence is not a matter of a good or bad
algorithm—it is due to the decentralized control model.
This is easy to show: in the example in Fig. 10 (taken
from (Schwartz and Sharir, 1983)) each of the robots
R1, R2 is required to reach its respective targetT1, T2.
The task is clearly impossible unless the motion of both
robots is closely coordinated in a centralized manner.

To understand the frequency of such unfortunate si-
tuations, consider a notion of algorithm robustness,

defined, say, by the frequency of cases when because
of the “jams” one or more robots do not reach their
(otherwise reachable) targets in a randomly gener-
ated environment. Since today there are no accepted
ways for defining statistical distributions of geomet-
ric shapes (Harding and Kendall, 1974), setting up a
rigorous statistical test here is difficult. Simple statisti-
cal tests with “reasonable” shape/position distributions
show, however, that in randomly generated complex
scenes the described algorithm is remarkably robust
(Yegorov, 1996). Note also that the complexity of gen-
erated motion in the example in Fig. 8 seems already
to be beyond the human ability for space reasoning and
centralized control (with complete or with incomplete

P1: PMR/KBA/KCM P2: PMR/SRK P3: PMR/SRK QC: / T1: PMR

Autonomous Robots KL402-08-Lumelsky February 5, 1997 16:44

Decentralized Motion Planning 135

information). One would find it even more difficult to
contemplate such control when observing this motion
in real-time animation.

Note

1. The sampling rate depends on the nature of sensing, computa-
tional resources, and the algorithm’s computational complexity.
The former two are functions of technology: today, even some
vision-based systems (perhaps the most computation-taxing sens-
ing medium) are already able to do at least simple planning in real
time.

References

Abelson, H. and diSessa, A. 1981.Turtle Geometry. MIT Press:
Cambridge, MA.

Buckley, S. 1989. Fast motion planning for multiple moving robots.
Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 322–326.

Cheung, E. and Lumelsky, V.J. 1989. Proximity sensing in robot
manipulator motion planning: System and implementation issues.
IEEE Journal of Robotics and Automation, 5(6):740–751.

Erdmann, M. and Lozano-Perez, T. 1987. On multiple moving ob-
jects.Algorithmica, 2:477–522.

Harding, E. and Kendall, D. (Eds.),Stochastic Geometry, John Wiley
and Sons: London-New York, 1974.

Hopcroft, J., Schwartz, J., and Sharir, M. 1984. On the complexity
of motion planning for multiple independent objects: PSPACE
hardness of the ‘warehouseman’s problem’.International Journal
of Robotics Research 3, 3(4):76–88.

Kant, K. and Zucker, S. 1986. Towards efficient planning: The
path-velocity decomposition.International Journal of Robotics
Research, 5:72–89.

Lumelsky, V. and Stepanov, A. 1987. Path planning strategies for a
point mobile automaton moving amongst unknown obstacles of
arbitrary shape.Algorithmica, 3(4):403–430.

Mahadevan, S. and Connell, J. 1992. Automatic programming of
behavior-based robots using reinforcement learning.Artificial
Intelligence, 55(2,3):311–365.

Mataric, M. 1994. Interaction and intelligent behavior. Ph.D. The-
sis, MIT, Dept. of Electrical Engineering and Computer Science,
AITR-1495.

Preparata, F. and Shamos, M. 1985.Computational Geometry,
Springer-Verlag: New York.

Scheinman, V. 1987. Robotworld: A multiple robot vision guided
assembly system.Proceedings of the International Symposium on
Robotics Research.

Schwartz, J. and Sharir, M. 1983. On the piano movers problem—III.
Coordinating the motion of several independent bodies.Interna-
tional Journal of Robotics Research, 3.

Spirakis, P. and Yap, C. 1984. Strong NP-hardness of moving many
discs.Information Processing Letters, 19:55–59.

Tournassoud, P. 1986. A strategy for obstacle avoidance and its ap-
plication to multi-robot systems.Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 1224–1229.

Yap, C. 1984. Coordinating the motion of several discs. TR-105,
Courant Institute of Mathematical Sciences, New York University,
New York.

Yegorov, V. 1996. Statistical analysis of sensor-based motion plan-
ning algorithms. MS Thesis, Dept. of Computer Science, Univer-
sity of Wisconsin-Madison.

Vladimir J. Lumelsky is currently Professor in Dept. of Mechanical
Engineering and Director of Robotics Laboratory at the University
of Wisconsin-Madison. He received his Ph.D. in applied mathema-
tics from the Institute of Control Sciences (ICS), USSR National
Academy of Sciences, Moscow, in 1970. He then held academic and
research positions with the ICS, Moscow; Ford Motor Co. Scientific
Labs; General Electric Co. Corporate Research Center; and Yale
University. His professional interests include robotics, industrial au-
tomation, computational geometry, sensor-based intelligent systems,
control theory, pattern recognition, and kinematics. He has served on
the Editorial Board of the IEEE Transactions on Robotics and Au-
tomation; on the Board of Governors of that Society; as Chairman
of the Society’s Technical Committee on Robot Motion Planning;
Chairman of IFAC Working Group on Robot Motion, Sensing, and
Planning; Program Chair of the 1989 IEEE Intern. Conf. on Intel-
ligent Robots and Systems (IROS’89) in Tokyo; Guest Editor for
two special issues of the IEEE Trans. on Robotics and Automa-
tion, in 1987 and 1989. He is IEEE Fellow, and member of ACM
and SME.

K.R. Harinarayan is currently a graduate student in the Depart-
ment of Mechanical Engineering and the School of Business, at
the University of Wisconsin-Madison. He graduated from the In-
dian Institute of Technology, Madras, India, with a B.Tech degree in
Mechanical Engineering in 1991. He will be completing his Masters
in Mechanical Engineering and MBA in Finance in December 1996.
He has varied interests ranging from Control Systems and Robotics,
to Finance and Investments, to Computer Networking. He will be
returning to India upon graduation and hopes to set up his own
Engineering concern.

