- Timing From Microseconds to Hours
 - Astable or Monostable Operation
 - Adjustable Duty Cycle
 - TTL-Compatible Output Can Sink or Source Up To 200 mA

description/ordering information

These devices are precision timing circuits capable of producing accurate time delays or oscillation. In the time-delay or monostable mode of operation, the timed interval is controlled by a single external resistor and capacitor network. In the astable mode of operation, the frequency and duty cycle can be controlled independently with two external resistors and a single external capacitor.

The threshold and trigger levels normally are two-thirds and one-third, respectively, of V_{CC}. These levels can be altered by use of the control-voltage terminal. When the trigger input falls below the trigger level, the flip-flop is set and the output goes high. If the trigger input is above the trigger level and the threshold input is above

NE555 . . D, P, PS, OR PW PACKAGE
SA555 ... D OR P PACKAGE SE555 . . D, JG, OR P PACKAGE
(TOP VIEW)

SE555 . . FK PACKAGE (TOP VIEW)

NC - No internal connection the threshold level, the flip-flop is reset and the output is low. The reset (RESET) input can override all other inputs and can be used to initiate a new timing cycle. When RESET goes low, the flip-flop is reset and the output goes low. When the output is low, a low-impedance path is provided between discharge (DISCH) and ground.
The output circuit is capable of sinking or sourcing current up to 200 mA . Operation is specified for supplies of 5 V to 15 V . With a 5-V supply, output levels are compatible with TTL inputs.

description/ordering information (continued)

ORDERING INFORMATION

$\mathrm{T}_{\mathbf{A}}$	$\begin{gathered} \mathrm{V}_{\text {THRES }} \\ \text { MAX } \\ \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V} \end{gathered}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	11.2 V	PDIP (P)	Tube of 50	NE555P	NE555P
		SOIC (D)	Tube of 75	NE555D	NE555
			Reel of 2500	NE555DR	
		SOP (PS)	Reel of 2000	NE555PSR	N555
		TSSOP (PW)	Tube of 150	NE555PW	N555
			Reel of 2000	NE555PWR	
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	11.2 V	PDIP (P)	Tube of 50	SA555P	SA555P
		SOIC (D)	Tube of 75	SA555D	SA555
			Reel of 2000	SA555DR	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	10.6 V	PDIP (P)	Tube of 50	SE555P	SE555P
		SOIC (D)	Tube of 75	SE555D	SE555D
			Reel of 2500	SE555DR	
		CDIP (JG)	Tube of 50	SE555JG	SE555JG
		LCCC (FK)	Tube of55	SE555FK	SE555FK

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE

RESET	TRIGGER VOLTAGE \ddagger	THRESHOLD VOLTAGE \ddagger	OUTPUT	DISCHARGE SWITCH
Low	Irrelevant	Irrelevant	Low	On
High	$<1 / 3 \mathrm{~V}_{\mathrm{DD}}$	Irrelevant	High	Off
High	$>1 / 3 \mathrm{~V}_{\mathrm{DD}}$	$>2 / 3 \mathrm{~V}_{\mathrm{DD}}$	Low	On
High	$>1 / 3 \mathrm{~V}_{\mathrm{DD}}$	$<2 / 3 \mathrm{~V}_{\mathrm{DD}}$	As previously established	

\ddagger Voltage levels shown are nominal.
functional block diagram

Pin numbers shown are for the D, JG, P, PS, and PW packages.
NOTE A: RESET can override TRIG, which can override THRES.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage	SA555, NE555	4.5	16	V
	SE555	4.5	18	
Input voltage (CONT, RESET, THRES, and TRIG)			V_{CC}	V
Output current			± 200	mA
$\mathrm{T}_{\mathrm{A}} \quad$ Operating free-air temperature	NE555	0	70	${ }^{\circ} \mathrm{C}$
	SA555	-40	85	
	SE555	-55	125	

electrical characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)

PARAMETER	TEST CONDITIONS		SE555			$\begin{aligned} & \text { NE555 } \\ & \text { SA555 } \end{aligned}$			UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	
THRES voltage level	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		9.4	10	10.6	8.8	10	11.2	V
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		2.7	3.3	4	2.4	3.3	4.2	
THRES current (see Note 6)				30	250		30	250	nA
TRIG voltage level	$V_{C C}=15 \mathrm{~V}$		4.8	5	5.2	4.5	5	5.6	V
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	3		6				
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		1.45	1.67	1.9	1.1	1.67	2.2	
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	1.9						
TRIG current	TRIG at 0 V			0.5	0.9		0.5	2	$\mu \mathrm{A}$
RESET voltage level			0.3	0.7	1	0.3	0.7	1	V
	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$				1.1				
RESET current	RESET at $\mathrm{V}_{\text {CC }}$			0.1	0.4		0.1	0.4	mA
	RESET at 0 V			-0.4	-1		-0.4	-1.5	
DISCH switch off-state current				20	100		20	100	nA
CONT voltage (open circuit)	$V_{C C}=15 \mathrm{~V}$		9.6	10	10.4	9	10	11	V
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	9.6		10.4				
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		2.9	3.3	3.8	2.6	3.3	4	
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	2.9		3.8				
Low-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \\ & \mathrm{l} \mathrm{OL}=10 \mathrm{~mA} \end{aligned}$			0.1	0.15		0.1	0.25	
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			0.2				
	$\begin{aligned} & \mathrm{V} \mathrm{CC}=15 \mathrm{~V}, \\ & \mathrm{IOL}=50 \mathrm{~mA} \end{aligned}$			0.4	0.5		0.4	0.75	
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			1				
	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \\ & \mathrm{lOL}=100 \mathrm{~mA} \end{aligned}$			2	2.2		2	2.5	
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			2.7				
	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \quad \mathrm{IOL}=200 \mathrm{~mA}$		2.5			2.5			V
	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ \mathrm{IOL}=3.5 \mathrm{~mA} \\ \hline \end{array}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			0.35				
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,			0.1	0.2		0.1	0.35	
	$\mathrm{l} \mathrm{OL}=5 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$			0.8				
	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{I} \mathrm{OL}=8 \mathrm{~mA}$		0.15	0.25		0.15	0.4	
High-level output voltage	$\begin{aligned} & \mathrm{V} \mathrm{CC}=15 \mathrm{~V}, \\ & \mathrm{IOH}=-100 \mathrm{~mA} \end{aligned}$		13	13.3		12.75	13.3		V
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	12						
	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \quad \mathrm{IOH}=-200 \mathrm{~mA}$		12.5			12.5			
	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{l} \mathrm{OH}=-100 \mathrm{~mA} \end{aligned}$		3	3.3		2.75	3.3		
		$\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	2						
Supply current	Output low, No load	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		10	12		10	15	mA
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		3	5		3	6	
	Output high, No load	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		9	10		9	13	
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		2	4		2	5	

NOTE 6: This parameter influences the maximum value of the timing resistors R_{A} and R_{B} in the circuit of Figure 12. For example, when $\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}$, the maximum value is $R=R_{A}+R_{B} \approx 3.4 \mathrm{M} \Omega$, and for $\mathrm{V}_{C C}=15 \mathrm{~V}$, the maximum value is $10 \mathrm{M} \Omega$.

operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and 15 V

PARAMETER		TEST CONDITIONS \dagger	SE555			NE555SA555			UNIT	
		MIN	TYP	MAX	MIN	TYP	MAX			
Initial error of timing interval \ddagger	Each timer, monostable§		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.5	1.5*		1	3	\%
	Each timer, astablel			1.5			2.25			
Temperature coefficient of timing interval	Each timer, monostable§	$\mathrm{T}_{\mathrm{A}}=\mathrm{MIN}$ to MAX		30	100*		50		ppm $/{ }^{\circ} \mathrm{C}$	
	Each timer, astablel			90			150			
Supply-voltage sensitivity of timing interval	Each timer, monostable§	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		0.05	0.2^{*}		0.1	0.5	\%/V	
	Each timer, astable ${ }^{\text {d }}$			0.15			0.3			
Output-pulse rise time		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		100	200*		100	300	ns	
Output-pulse fall time		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		100	200*		100	300	ns	

* On products compliant to MIL-PRF-38535, this parameter is not production tested.
\dagger For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
\ddagger Timing interval error is defined as the difference between the measured value and the average value of a random sample from each process run.
\S Values specified are for a device in a monostable circuit similar to Figure 9 , with the following component values: $R_{A}=2 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$, $\mathrm{C}=0.1 \mu \mathrm{~F}$.
IV Values specified are for a device in an astable circuit similar to Figure 12, with the following component values: $R_{A}=1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$, $\mathrm{C}=0.1 \mu \mathrm{~F}$.

TYPICAL CHARACTERISTICS \dagger

Figure 1

LOW-LEVEL OUTPUT VOLTAGE
 vs
 LOW-LEVEL OUTPUT CURRENT

Figure 3

LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT

Figure 2

DROP BETWEEN SUPPLY VOLTAGE AND OUTPUT vs
HIGH-LEVEL OUTPUT CURRENT

Figure 4
\dagger Data for temperatures below $0^{\circ} \mathrm{C}$ and above $70^{\circ} \mathrm{C}$ are applicable for SE555 circuits only.

TYPICAL CHARACTERISTICS \dagger

SUPPLY CURRENT
vs
SUPPLY VOLTAGE

Figure 5
NORMALIZED OUTPUT PULSE DURATION (MONOSTABLE OPERATION)
vs
FREE-AIR TEMPERATURE

Figure 7

NORMALIZED OUTPUT PULSE DURATION (MONOSTABLE OPERATION)
vs
SUPPLY VOLTAGE

Figure 6
PROPAGATION DELAY TIME
vs
LOWEST VOLTAGE LEVEL OF TRIGGER PULSE

Figure 8
†Data for temperatures below $0^{\circ} \mathrm{C}$ and above $70^{\circ} \mathrm{C}$ are applicable for SE555 series circuits only.

APPLICATION INFORMATION

monostable operation

For monostable operation, any of these timers can be connected as shown in Figure 9. If the output is low, application of a negative-going pulse to the trigger (TRIG) sets the flip-flop ($\overline{\mathrm{Q}}$ goes low), drives the output high, and turns off Q1. Capacitor C then is charged through R_{A} until the voltage across the capacitor reaches the threshold voltage of the threshold (THRES) input. If TRIG has returned to a high level, the output of the threshold comparator resets the flip-flop ($\overline{\mathrm{Q}}$ goes high), drives the output low, and discharges C through Q1.

Pin numbers shown are for the D, JG, P, PS, and PW packages.
Figure 9. Circuit for Monostable Operation
Monostable operation is initiated when TRIG voltage falls below the trigger threshold. Once initiated, the sequence ends only if TRIG is high at the end of the timing interval. Because of the threshold level and saturation voltage of Q1, the output pulse duration is approximately $t_{w}=1.1 R_{A} C$. Figure 11 is a plot of the time constant for various values of R_{A} and C. The threshold levels and charge rates both are directly proportional to the supply voltage, V_{cc}. The timing interval is, therefore, independent of the supply voltage, so long as the supply voltage is constant during the time interval.

Applying a negative-going trigger pulse simultaneously to RESET and TRIG during the timing interval discharges C and reinitiates the cycle, commencing on the positive edge of the reset pulse. The output is held low as long as the reset pulse is low. To prevent false triggering, when RESET is not used, it should be connected to V_{CC}.

Figure 10. Typical Monostable Waveforms

Figure 11. Output Pulse Duration vs Capacitance

APPLICATION INFORMATION

astable operation

As shown in Figure 12, adding a second resistor, R_{B}, to the circuit of Figure 9 and connecting the trigger input to the threshold input causes the timer to self-trigger and run as a multivibrator. The capacitor C charges through R_{A} and R_{B} and then discharges through R_{B} only. Therefore, the duty cycle is controlled by the values of R_{A} and R_{B}.
This astable connection results in capacitor C charging and discharging between the threshold-voltage level $\left(\approx 0.67 \times \mathrm{V}_{\mathrm{CC}}\right)$ and the trigger-voltage level $\left(\approx 0.33 \times \mathrm{V}_{\mathrm{CC}}\right)$. As in the monostable circuit, charge and discharge times (and, therefore, the frequency and duty cycle) are independent of the supply voltage.

Pin numbers shown are for the D, JG, P, PS, and PW packages.
NOTE A: Decoupling CONT voltage to ground with a capacitor can improve operation. This should be evaluated for individual applications.
Figure 12. Circuit for Astable Operation

Figure 13. Typical Astable Waveforms

APPLICATION INFORMATION

astable operation (continued)

Figure 13 shows typical waveforms generated during astable operation. The output high-level duration t_{H} and low-level duration t_{L} can be calculated as follows:

$$
\begin{aligned}
& t_{H}=0.693\left(R_{A}+R_{B}\right) C \\
& t_{L}=0.693\left(R_{B}\right) c
\end{aligned}
$$

Other useful relationships are shown below.

$$
\begin{aligned}
& \text { period }=t_{H}+t_{L}=0.693\left(R_{A}+2 R_{B}\right) C \\
& \text { frequency } \approx \frac{1.44}{\left(R_{A}+2 R_{B}\right) C}
\end{aligned}
$$

Output driver duty cycle $=\frac{t_{L}}{t_{H}+t_{L}}=\frac{R_{B}}{R_{A}+2 R_{B}}$
Output waveform duty cycle

$$
=\frac{t_{H}}{t_{H}+t_{L}}=1-\frac{R_{B}}{R_{A}+2 R_{B}}
$$

Low-to-high ratio $=\frac{t_{L}}{t_{H}}=\frac{R_{B}}{R_{A}+R_{B}}$

Figure 14. Free-Running Frequency

APPLICATION INFORMATION

missing-pulse detector

The circuit shown in Figure 15 can be used to detect a missing pulse or abnormally long spacing between consecutive pulses in a train of pulses. The timing interval of the monostable circuit is retriggered continuously by the input pulse train as long as the pulse spacing is less than the timing interval. A longer pulse spacing, missing pulse, or terminated pulse train permits the timing interval to be completed, thereby generating an output pulse as shown in Figure 16.

Pin numbers shown are shown for the $D, J G, P, P S$, and PW packages.
Figure 15. Circuit for Missing-Pulse Detector

Time - 0.1 ms/div
Figure 16. Completed-Timing Waveforms for Missing-Pulse Detector

APPLICATION INFORMATION

frequency divider

By adjusting the length of the timing cycle, the basic circuit of Figure 9 can be made to operate as a frequency divider. Figure 17 shows a divide-by-three circuit that makes use of the fact that retriggering cannot occur during the timing cycle.

Time - 0.1 ms/div
Figure 17. Divide-by-Three Circuit Waveforms

pulse-width modulation

The operation of the timer can be modified by modulating the internal threshold and trigger voltages, which is accomplished by applying an external voltage (or current) to CONT. Figure 18 shows a circuit for pulse-width modulation. A continuous input pulse train triggers the monostable circuit, and a control signal modulates the threshold voltage. Figure 19 shows the resulting output pulse-width modulation. While a sine-wave modulation signal is shown, any wave shape could be used.

APPLICATION INFORMATION

Pin numbers shown are for the D, JG, P, PS, and PW packages.
NOTE A: The modulating signal can be direct or capacitively coupled to CONT. For direct coupling, the effects of modulation source voltage and impedance on the bias of the timer should be considered.

Figure 18. Circuit for Pulse-Width Modulation

Time - $0.5 \mathrm{~ms} / \mathrm{div}$
Figure 19. Pulse-Width-Modulation Waveforms

pulse-position modulation

As shown in Figure 20, any of these timers can be used as a pulse-position modulator. This application modulates the threshold voltage and, thereby, the time delay, of a free-running oscillator. Figure 21 shows a triangular-wave modulation signal for such a circuit; however, any wave shape could be used.

Pin numbers shown are for the D, JG, P, PS, and PW packages.
NOTE A: The modulating signal can be direct or capacitively coupled to CONT. For direct coupling, the effects of modulation source voltage and impedance on the bias of the timer should be considered.

Figure 20. Circuit for Pulse-Position Modulation

Time - 0.1 ms/div
Figure 21. Pulse-Position-Modulation Waveforms

APPLICATION INFORMATION

sequential timer

Many applications, such as computers, require signals for initializing conditions during start-up. Other applications, such as test equipment, require activation of test signals in sequence. These timing circuits can be connected to provide such sequential control. The timers can be used in various combinations of astable or monostable circuit connections, with or without modulation, for extremely flexible waveform control. Figure 22 shows a sequencer circuit with possible applications in many systems, and Figure 23 shows the output waveforms.

Pin numbers shown are for the D, JG, P, PS, and PW packages.
NOTE A: S closes momentarily at $t=0$.
Figure 22. Sequential Timer Circuit

Figure 23. Sequential Timer Waveforms

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ${ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
JM38510/10901BPA	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
NE555D	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
NE555DR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
NE555P	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
NE555PSLE	OBSOLETE	SO	PS	8		TBD	Call TI	Call TI
NE555PSR	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
NE555PW	ACTIVE	TSSOP	PW	8	150	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
NE555PWR	ACTIVE	TSSOP	PW	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
NE555Y	OBSOLETE			0		TBD	Call TI	Call TI
SA555D	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SA555DR	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
SA555P	ACTIVE	PDIP	P	8	50	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SE555D	ACTIVE	SOIC	D	8	75	TBD	CU NIPDAU	Level-1-220C-UNLIM
SE555DR	ACTIVE	SOIC	D	8	2500	TBD	CU NIPDAU	Level-1-220C-UNLIM
SE555FKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	Level-NC-NC-NC
SE555JG	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
SE555JGB	ACTIVE	CDIP	JG	8	1	TBD	A42 SNPB	Level-NC-NC-NC
SE555N	OBSOLETE	PDIP	N	8		TBD	Call TI	Call TI
SE555P	ACTIVE	PDIP	P	8	50	TBD	CU NIPDAU	Level-NC-NC-NC

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the Tl part(s) at issue in this document sold by TI to Customer on an annual basis.

JG (R-GDIP-T8)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012 variation AA.

MECHANICAL DATA

PS (R-PDSO-G8)
PLASTIC SMALL-OUTLINE PACKAGE
(
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 .

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated

