
max speed: 3’/s

Invalid sample
Last known location
z > 190cm

Feasible sample

Figure 1: Valid robot positions on the floor

1 Filtering out erroneous readings

Discard |d− hceiling| > ε
By sitting still long enough, the robot can get a good approximation to

its location. To do this, perform the least-squares calculation until you have
two positions with a valid height (currently, z > 190). If they are close, then
your location is known. Now that the listener’s location is known, we may
discard clearly erroneous readings.

Since the robot has a maximum speed, we may safely discard any beacon
readings which would require the robot to travel at a rate exceeding this
fixed speed. The resulting circle is illustrated in Figure 1. Given the robot’s
heading, the valid region can be further restricted to an ellipse inside this
circle, but we do not consider this for now. Either way, this bounding region
can be used to obtain bounds on valid beacon readings.

Figure 2 shows how radial distances on the floor translate into valid bea-
con distances. The beacon distance from the last known position, h, sat-
isfies the relation h2 = (rb − r0)

2 + h̄2. The extreme values satisfy h2
min =

(rb−rmin)
2 + h̄2 and h2

max = (rb−rmax)
2 + h̄2. In general, hmax−h ≥ h−hmin;

however, the difference is not great, and so we take ∆h = hmax − h and use

1

Beacon

r0 r+r
−

h h+

rb

h̄h
−

Figure 2: Valid beacon readings

the bound h−∆h < hvalid < h + ∆h.
Ceiling height: h̄ = Bz − rz.
Calculating ∆h: Multiply the additive conjugate pair to obtain

(h+ + h)(h+ − h) = h2
+ − h2. By the definitions of h, we also have that 2h ≤

h+ + h ≤ 2h+. Then use this inequality to obtain an upper bound on ∆h.

∆h ≤ h+ − h =
h2

+ − h2

h+ + h
≤

h2
+ − h2

2h

∆h ≤ [(r+ − rb)
2 + h̄2]− [(r0 − rb)

2 + h̄2]

2h

=
(r+ − rb)

2 − (r0 − rb)
2

2h

=
(r2

+ − 2r+rb + r2
b)− (r2

0 − 2r0rb + r2
b)

2h

=
r2
+ − r2

0 + 2(r0 − r+)rb

2h

=
(r0 + dr)2 − r2

0 − 2rbdr

2h

=
(r2

0 + 2r0dr + dr2)− r2
0 − 2rbdr

2h

=
dr2 + 2(r0 − rb)dr

2h

Optionally, add in acknowledgement of normal measurement variance to get
the bound ∆h ≤ [dr2 +2(r0−rb)dr]/2h+2σr. Note that the radial difference
is dr = kvdt ≈ (3′/s)dt = (91cm/s)dt = (0.09cm/ms)dt.

2

2 Moving System Model

The receiver has a current position and recent average velocity. These will
agree with observed measurements.

Beacon positions: Bi = [Bi
x, B

i
y, B

i
z]; i indicates which beacon was heard

Current time: t
Present position: ~p = [~px, ~py, ~pz]
Recent velocity: ~v = [~vx, ~vy, ~vz]

Note that ~vz ≡ 0 since the robots stay at a fixed height from the floor
plane.

At a time t1 in the recent past, we have that p(t1) + (t − t1)~v = ~p; thus
~p(tn) = ~p− (t− tn)~v for all recent times tn ≈ t.

3 Moving Least-Squares Fit

Each reading from the cricket system gives us a time, distance pair, (tn, dn).
For each of these readings, we may associate our predicted distance, hn =
||Bn − p(tn)||, based on the known beacon location, when the reading oc-
curred, and the state variables ~p and ~v. To obtain an optimal fit on the cricket
data, we want to minimize a cost function of the form J =

∑
n(hn − dn)2.

However, this cost function contains square roots in hn and is therefore
hard to solve for. Since we really only need hn = dn and both hn and dn

are positive, our new least-squares cost function is J =
∑

n(h2
n − d2

n)2. This
cost is almost the same as the optimal cost, but it weighs errors slightly
differently. Most importantly, squaring hn before subtraction dn eliminates
the difficult square roots.

By setting h2
n − d2

n = 0 for each beacon measurement received, we obtain
N equations of the form

fn : h2
n − d2

n = (1)

Bn ·Bn − 2Bn · ~p + 2(t− tn)Bn · ~v
+ ~p · ~p− 2(t− tn)~p · ~v + (t− tn)2~v · ~v − d2

n = 0

Unfortunately, these equations still contain the nonlinear terms ~p · ~p,
~p · ~v, and ~v · ~v. By taking difference between fn for different readings, these
nonlinearities may be cancelled out. First, re-arrange fn to separate out the

3

nonlinearities:

fn : ~p · ~p− 2(t− tn)~p · ~v + (t− tn)2~v · ~v (2)

= d2
n −Bn ·Bn + 2Bn · ~p− 2(t− tn)Bn · ~v

Taking the difference between two of these equations will drop out the
~p · ~p term. For example,

f2 − f1 : [~p · ~p− 2(t− t2)~p · ~v + (t− t2)
2~v · ~v] (3)

− [~p · ~p− 2(t− t1)~p · ~v + (t− t1)
2~v · ~v]

= [d2
2 −B2 ·B2 + 2B2 · ~p− 2(t− t2)B

2 · ~v]

− [d2
1 −B1 ·B1 + 2B1 · ~p− 2(t− t1)B

1 · ~v]

Which simplifies to

0+2(t2 − t1)~p · ~v + (t22 − 2t(t2 − t1)− t11)~v · ~v (4)

= (d2
2 − d2

1)− (B2 ·B2 −B1 ·B1)

+ 2(B2 −B1) · ~p− 2((t− t2)B
2 − (t− t1)B

1) · ~v

The weighted difference of two such differences would then drop out the
~p · ~v terms; and this could be repeated to eliminate ~v · ~v. However, such a
process may amplify the variance inherent in each individual reading. In-
stead, we use all the measurements to calculate estimates of the nonlinear
terms as linear functions of ~p and ~v. To start, the following sums will be
useful.

N =
∑

n

(1)

N1 =
∑

n

(t− tn)

N2 =
∑

n

(t− tn)2

N3 =
∑

n

(t− tn)3

N4 =
∑

n

(t− tn)4

4

These appear in the following weighted sums of fn, which express the
nonlinear terms as linear functions of the unknowns.

Spp =
∑

n

(t− tn)2fn (5)

=N2~p · ~p− 2N3~p · ~v + N4~v · ~v

=
∑

n

(t− tn)2(d2
n −Bn ·Bn) + 2

∑
n

(t− tn)2(Bn · ~p)− 2
∑

n

(t− tn)3(Bn · ~v)

Spv =
∑

n

(t− tn)fn (6)

=N1~p · ~p− 2N2~p · ~v + N3~v · ~v

=
∑

n

(t− tn)(d2
n −Bn ·Bn) + 2

∑
n

(t− tn)(Bn · ~p)− 2
∑

n

(t− tn)2(Bn · ~v)

Svv =
∑

n

fn (7)

=N~p · ~p− 2N1~p · ~v + N2~v · ~v

=
∑

n

(d2
n −Bn ·Bn) + 2

∑
n

(Bn · ~p)− 2
∑

n

(t− tn)(Bn · ~v)

Notice that there are two ways of expressing each of these sums; one is
linear, and the other is nonlinear. These may be expressed in matrix form as Spp

Spv

Svv

 = N

 ~p · ~p
−2~p · ~v

~v · ~v

 = L

 1
2~p

−2~v

 (8)

where

N =

 N2 N3 N4

N1 N2 N3

N N1 N2

 (9)

and

L =

 ∑
n(t− tn)2(d2

n −Bn ·Bn)
∑

n(t− tn)2Bn
∑

n(t− tn)3Bn∑
n(t− tn)(d2

n −Bn ·Bn)
∑

n(t− tn)Bn
∑

n(t− tn)2Bn∑
n(d2

n −Bn ·Bn)
∑

n Bn
∑

n(t− tn)Bn


(10)

5

These linear equations are easily solved to obtain ~p · ~p
−2~p · ~v

~v · ~v

 = N−1L

 1
2~p

−2~v

 (11)

By defining T = [1, t − tn, (t − tn)2], the nonlinearities can now be
removed from fn (2) since

~p ·~p−2(t−tn)~p ·~v+(t−tn)2~v ·~v = T ·

 ~p · ~p
−2~p · ~v

~v · ~v

 = T ·N−1L

 1
2~p

−2~v

 (12)

Thus a least-squares fit to the position-velocity model can be obtained
by solving N equations of the form

([
0 Bn (t− tn)Bn

]
− T · N−1L

)  0
2~p

−2~v

 = −d2
n+Bn·B2+T ·N−1L

 1
0
0


(13)

6

3.1 Algorithm

Here is the proposed algorithm for the above result. To represent the formulas
for Spp, Spv, and Svv, we write them as

Spp =
∑

n

(d2
n −Bn ·Bn) + 2

∑
n

(Bn) · ~p + 2
∑

n

((t− tn)Bn) · ~v

=s1c + 2([s1px, s1py, s1pz] · ~p + [s1vx, s1vy, s1vz] · ~v)

Spv =
∑

n

d2
n −Bn ·Bn

t− tn
+ 2

∑
n

Bn

t− tn
· ~p + 2

∑
n

(Bn) · ~v

=s2c + 2([s2px, s2py, s2pz] · ~p + [s2vx, s2vy, s2vz] · ~v)

Svv =
∑

n

d2
n −Bn ·Bn

(t− tn)2
+ 2

∑
n

Bn

(t− tn)2
· ~p + 2

∑
n

Bn

t− tn
· ~v

=s3c + 2([s3px, s3py, s3pz] · ~p + [s3vx, s3vy, s3vz] · ~v)

To represent the formula for C(~p,~v), we shall write it as

C(~p,~v) = Cc + Cp~p + Cv~v

=

 ccx
ccy
ccz

 +

 cpxx cpxy cpxz
cpyx cpyy cpyz
cpzx cpzy cpzz

 ~p +

 cvxx cvxy cvxz
cvyx cvyy cvyz
cvzx cvzy cvzz

~v

7

t - array of times

bd - array of beacon distances

bx, by, bz - arrays of beacon coordinates

N:=number of readings

N1:=0

N2:=0

N_1:=0

N_2:=0

s1* = s2* = s3* :=0

// Generate the sums

for(n=0; n<N; n++)

{

dt:= t[N-1]-t[n]

dt2:= dt*dt

N1+= dt

N2+= dt2

N_1+= 1/dt

N_2+= 1/dt2

cn:= bd[n]*bd[n] - bx[n]*bx[n] - by[n]*by[n] - bz[n]*bz[n]

s1c+= cn

s2c+= cn/dt

s3c+= cn/dt2

s1px+= bx[n]

s2px+= bx[n]/dt

s3px+= bx[n]/dt2

// repeat for py and pz

s1vx+= bx[n]*dt

s2vx+= bx[n]

s3vx+= bx[n]/dt

// repeat for vy and vz

}

8

// Compute the inverse matrix B such that A*B=I

den:= N*N*N + N1*N1*N_2 + N2*N_1*N_1 - N*(2*N1*N_1 + N2*N_2)

b11:= N*N - N1*N_1

b12:= N2*N_1 - N1*N

b13:= N1*N1 - N2*N

b21:= N1*N_2 - N*N_1

b22:= N*N - N2*N_2

b23:= b12

b31:= N_1*N_1 - N*N_2

b32:= b21

b33:= b11

// Calculate C(p,v)=B*[Spp Spv Svv]’

ccx:= (b11*s1c + b12*s2c + b13*s3c)/den

cpxx:= 2*(b11*s1px + b12*s2px + b13*s3px)/den

cpxy:= 2*(b11*s1py + b12*s2py + b13*s3py)/den

cpxz:= 2*(b11*s1pz + b12*s2pz + b13*s3pz)/den

cvxx:= 2*(b11*s1vx + b12*s2vx + b13*s3vx)/den

cvxy:= 2*(b11*s1vy + b12*s2vy + b13*s3vy)/den

cvxz:= 2*(b11*s1vz + b12*s2vz + b13*s3vz)/den

ccy:= (b21*s1c + b22*s2c + b23*s3c)/den

cpyx:= 2*(b21*s1px + b22*s2px + b23*s3px)/den

cpyy:= 2*(b21*s1py + b22*s2py + b23*s3py)/den

cpyz:= 2*(b21*s1pz + b22*s2pz + b23*s3pz)/den

cvyx:= 2*(b21*s1vx + b22*s2vx + b23*s3vx)/den

cvyy:= 2*(b21*s1vy + b22*s2vy + b23*s3vy)/den

cvyz:= 2*(b21*s1vz + b22*s2vz + b23*s3vz)/den

ccz:= (b31*s1c + b32*s2c + b33*s3c)/den

cpzx:= 2*(b31*s1px + b32*s2px + b33*s3px)/den

cpzy:= 2*(b31*s1py + b32*s2py + b33*s3py)/den

cpzz:= 2*(b31*s1pz + b32*s2pz + b33*s3pz)/den

cvzx:= 2*(b31*s1vx + b32*s2vx + b33*s3vx)/den

cvzy:= 2*(b31*s1vy + b32*s2vy + b33*s3vy)/den

cvzz:= 2*(b31*s1vz + b32*s2vz + b33*s3vz)/den

9

// Set up the least-squares fit ‘Ax=B’

LSQA:= allocate space for an Nx6 matrix - coefficients of p and v

LSQx:= allocate space for a 6x1 matrix - solution for p and v

LSQB:= allocate space for an Nx1 matrix - constants

for(n=0; n<N; n++)

{

dt:= t[N-1]-t[n]

dt2:= dt*dt

// 2*B[n] - T*Cp

LSQA[i,0]:= 2*bx[n] - cpxx - dt*cpyx - dt2*cpzx

LSQA[i,1]:= 2*by[n] - cpxy - dt*cpyy - dt2*cpzy

LSQA[i,2]:= 2*bz[n] - cpxz - dt*cpyz - dt2*cpzz

// -2*(t-tn)*B[n] - T*Cv

LSQA[i,3]:= -2*dt*bx[n] - cvxx - dt*cvyx - dt2*cvzx

LSQA[i,4]:= -2*dt*by[n] - cvxy - dt*cvyy - dt2*cvzy

LSQA[i,5]:= -2*dt*bz[n] - cvxz - dt*cvyz - dt2*cvzz

LSQB[i]:= bx[n]*bx[n] + by[n]*by[n] + bz[n]*bz[n] - d[n]*d[n]

+ c1c + dt*c2c + dt2*c3c

}

// Perform the least-squares fit

10

dt0 dt1

t

1

w(t)

t1

Figure 3: Hanning-like weighting function. Sample values: dt1 = 0.5s, dt0 =
2.5s.

4 Weighted Least-Squares Fit

Since the robot can accelerate, we want to give recent measurements more
weight than older measurements. Thus the weighting function of Figure 3 is
used. This function is given by:

w(t) =


1 t1 − dt1 ≤ t

(t− dt1)/dt0 t1 − (dt0 + dt1) < t < t1 − dt1

0 else

(14)

This adjusts our cost function to become J =
∑

n wn(h2
n − d2

n).

5 Extended Kalman Filter

Variable Size Meaning
X−

k 6x1 Estimated system state (x,~v)
X+

k 6x1 EKF corrected system state
Kk 6x1 Kalman gain matrix
Pk 6x6 Covariance matrix
Rk 1x1 Estimated distance variance
dk 1x1 Reported distance measurement

6 Fixed Gain Filter

Assume we have a good estimate of our last state (x+
k−1, ~vk). Use it to predict

our current state, x−
k = x+

k−1+~vk∆t. Now look at the beacon’s distance. This
projects a sphere of radius dk around the beacon’s origin, Bk. Moving along

11

∇h

dkBk

h(x−
k
)

x
−

k

variance R

xB

x
+

k x
+

k−1

~vk

Figure 4: The basic Cricket filter design

the radius between x−
k and Bk, the nearest point indicated by the beacon is

denoted as xB.
Since the signals are noisy, there is some variance R in the distance mea-

surement. Ignoring this variance, we would just set x+
k = xB

= x−
k + (dk − h(x−

k))∇h. Since we have variance, we set x+
k = x−

k + θ(dk −
h(x−

k))∇h for some 0 < θ < 1.
Our velocity estimate for the next time step is then ~vk+1 = (x+

k −x+
k−1)/∆t.

Writing this in terms of the current estimate, this is ~vk+1 = ~vk+(x+
k −x−

k)/∆t.
The distance estimate h(x, v) is defined as

h(x, v) =
√

((x−
k)x −Bx)2 + ((x−

k)y −By)2 + ((x−
k)z −Bz)2

Thus, ∂h
∂x

=
(x−k)x−Bx

h
, ∂h

∂y
=

(x−k)y−By

h
, and ∂h

∂z
=

(x−k)z−Bz

h
.

12

