ME 360: FUNDAMENTALS OF SIGNAL PROCESSING, INSTRUMENTATION, AND CONTROL

Experiment No. 4
Modeling and Identification of an Electric Motor using Step Response Methods
Pre-lab Questions

These short answer questions must be completed and turned in at the beginning of the laboratory period.

1. a. On a separate sheet and using the following data, plot the expected step response of the motor-generator system.

 Steady state gain K .. 1.2
 Time constant τ ... 50 ms
 Initial output voltage V_0 ... 0 V
 Final input voltage $V_{in}(\infty)$... 4 V
 Starting time t_0 ... 0 s
 Ending time t_f ... 3 s

 b. On the step response plot from above, draw a tangent line at $t = 0$, and determine the intersection of this line with the long-time asymptote.

 c. Using the step response plot from above, determine the time at which the voltage change reaches 63.2% of its maximum value. Mark this point on the plot.

 d. Explain mathematically why τ is found at this 63.2% point.

2. See Appendix C Method 3. Show that

 $$\tau = \int_0^{\infty} \left[1 - \frac{V_{out}(t)}{V_{out}(\infty)} \right] dt$$

 with our first order system that has the equation

 $$V_{out}(t) = V_{out}(\infty) \left[1 - \exp\left(-\frac{t}{\tau}\right) \right]$$

3. Variation in K demonstrates what about our model?

4. List the methods used to calculate τ in this lab.