
LAB 3

Forward Kinematics

3.1 Important

Read the entire lab before starting and especially the “Grading” section so you
are aware of all due dates and requirements associated with the lab.

3.2 Objectives

The purpose of this lab is to implement the exponential forward kinematics on
the UR3 robot to estimate the end-effector pose given a set of joint angles. In
this lab you will:

• Solve the exponential forward kinematic equations for the UR3.

• Write a Python function that moves the UR3 to a configuration specified
by the user.

• Compare your exponential forward kinematic estimation with the actual
robot movement.

3.3 References

• Chapter 4 of Modern Robotics provides details of how to construct an
exponential forward kinematic for an open-chain robot.

3.4 Tasks

3.4.1 Theoretical Solution

Find the forward kinematic equations for the UR3 robot using the exponential
forward kinematics method. Solve for T06 and record the 6 matrices defined by
e[S1]θ1 through e[S6]θ6 .

24









3.5. PROCEDURE

Figure 3.2: The ”right hand rule”

3.5.2 Implementation on UR3

1. Download and extract lab3Py.tar.gz into the “src” directory of your
catkin directory. Don’t forget “source devel/setup.bash”. Then from
your base catkin directory run “catkin make” and if you receive no errors
you copied your lab3 starter code correctly. Also so that ROS registers
this new package “lab3pkg py”, run “rospack list” and you should see
lab3pkg py as one of the many packages.

2. You will notice that in lab3pkg py/scripts there are now three *.py files.
lab3 exec.py is the main() code, lab3 func.py defines the important
forward kinematic functions. lab3 header.py defines the header files.
We divide them up in this fashion for clarity. In this lab you will be
mainly editing lab3 func.py. You can of course change lab3 exec.py
but most of its functionality has already been given to you. Study the
code and comments in lab3 exec.py and lab3 func.py to see what the
starter code is doing and what parts you are going to need to change. Your
job is to add the code in the function Get MS() that correctly populates
the six screw axes S1 to S6 as well as the transformation matrix M. The
Python code uses the “numpy” module to create and multiply matrixes;
meanwhile, the matrix exponential “expm()” is achieved by including the
“Scipy” module. Then, with the S and M values you populated, write
the code in function lab fk() that generates and prints the homogeneous
transformation matrix T (θ).

3. Once your code is finished, run it using “rosrun lab3pkg py lab3 exec.py

28





3.7. DEMONSTRATION

• Include a table of all ω and q used and the v derived.

• Figures should be your own creation and not copies of the lab manual.

• For each test point, include:

– The given (θ1, θ2, θ3, θ4, θ5, θ6)

– The calculated d and measured r vectors

– The scalar error

• Include a brief discussion of sources of error.

3.7 Demonstration

Demonstrations of your working code will be done in-person. They will be done
live with your lab section TA or at any lab office hours. Demos are due before
the start of Lab 4.

3.7.1 Demo Process

Your TA will require you to run your program twice, each time with a different
set of joint variables.

3.8 Grading

• 75 points, successful demonstration.

• 20 points, individual report.

• 5 points, attendance.

3.9 Preparation for Lab 4

Lab 4 will cover inverse kinematics. In class you will mostly focus on numerical
inverse kinematics, but we will be using analytical inverse kinematics - i.e. we
will use geometry and constraints to find a closed form solution to the problem.
Suggested Reading:

• Chapter 6 of Modern Robotics provides multiple examples of inverse kine-
matics solutions. Especially Section 6.1.

• Chapter 3 of Robot Modeling and Control, by M. Spong, S. Hutchinson
and M Vidyasagar (Wiley and Sons, 2005). Especially Section 3.3.3. (A
version of this text is available online.)

30



3.9. PREPARATION FOR LAB 4

Figure 3.3: Screw axes on UR3.

Figure 3.4: Joint center locations on UR3.

31


